Generalization of a Signature Method to Transportation Problems
Yugoslav journal of operations research, Tome 6 (1996) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Balinski's strong dual feasible bases for assignment problems are generalized to transportation problems. They are celled dual feasible super bases or trees. The super trees (not necessarily dual feasible) are also a generalization of Cunningham's (primal feasible ) strong bases. A simplex algorithm for transportation problems which generates dual feasible super bases is presented. Transportation problems with total supply (demand) $D>O$, m supply and n demand nodes are solved in at most $\mu(\mu - 1)/2 + \mu(D - \alpha - \beta - \mu + 1)$ iterations and in at most $O( \mu(m + n)(D - \alpha - \beta))$ elementary steps, where n is the maximum supply, $\beta$ is the minimum demand and $\mu = min \{m - 1, n - 1 \}$.
@article{YJOR_1996_6_1_a4,
     author = {Kostas Dosios and Konstantinos Paparizzos},
     title = {Generalization of a {Signature} {Method} to {Transportation} {Problems}},
     journal = {Yugoslav journal of operations research},
     pages = {55 - 71},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1996},
     url = {https://geodesic-test.mathdoc.fr/item/YJOR_1996_6_1_a4/}
}
TY  - JOUR
AU  - Kostas Dosios
AU  - Konstantinos Paparizzos
TI  - Generalization of a Signature Method to Transportation Problems
JO  - Yugoslav journal of operations research
PY  - 1996
SP  - 55 
EP  -  71
VL  - 6
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/YJOR_1996_6_1_a4/
ID  - YJOR_1996_6_1_a4
ER  - 
%0 Journal Article
%A Kostas Dosios
%A Konstantinos Paparizzos
%T Generalization of a Signature Method to Transportation Problems
%J Yugoslav journal of operations research
%D 1996
%P 55 - 71
%V 6
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/YJOR_1996_6_1_a4/
%F YJOR_1996_6_1_a4
Kostas Dosios; Konstantinos Paparizzos. Generalization of a Signature Method to Transportation Problems. Yugoslav journal of operations research, Tome 6 (1996) no. 1. https://geodesic-test.mathdoc.fr/item/YJOR_1996_6_1_a4/