Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_4_a10, author = {V. I. Zhegalov}, title = {On a proplem for generalized {Boussinesq--Love} equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {771--776}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_4_a10/} }
TY - JOUR AU - V. I. Zhegalov TI - On a proplem for generalized Boussinesq--Love equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 771 EP - 776 VL - 23 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_4_a10/ LA - ru ID - VSGTU_2019_23_4_a10 ER -
%0 Journal Article %A V. I. Zhegalov %T On a proplem for generalized Boussinesq--Love equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 771-776 %V 23 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_4_a10/ %G ru %F VSGTU_2019_23_4_a10
V. I. Zhegalov. On a proplem for generalized Boussinesq--Love equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 771-776. https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_4_a10/
[1] Soldatov A. P., Shkhanukov M. Kh., “Boundary-value-problems with a Samarsky, A. A. general nonlocal condition for higher-order pseudoparabolic equations”, Dokl. Math., 36:3 (1988), 507–511 | MR | Zbl
[2] Serdyukova S. I., “Exotic asymptotics for a linear hyperbolic equation”, Dokl. Math., 67:2 (2003), 203–207 | MR | Zbl
[3] Zhegalov V. I., Mironov A. N., Differentsial'nye uravneniia so starshimi chastnymi proizvodnymi [Differential Equations with Highest Partial Derivatives], Kazan Math. Society, Kazan, 2001, 226 pp. (In Russian) | Zbl
[4] Zhegalov V. I., Mironov A. N., Utkina E. A., Uravneniia s dominiruiushchei chastnoi proizvodnoi [Equations with Dominant Partial Derivative], Kazan Univ., Kazan, 2014, 385 pp. (In Russian)
[5] Mironov A. N., “On the Riemann method for solving the Cauchy problem”, Russian Math. (Iz. VUZ), 49:2 (2005), 32–41 | MR
[6] Mironov A. N., Mironova L. B., “Laplace invariants for a generalized Boussinesq–Love equation”, Differ. Equ., 51:1 (2015), 132–137 | DOI | DOI | MR | Zbl
[7] Anikonov Yu. E., Belov Yu. Ya., “Determining two unknown coefficients of parabolic type equation”, J. Inverse Ill-posed Probl., 9:5 (2001), 469–487 | DOI | MR | Zbl
[8] Anikonov Yu. E., “Inverse problems and classes of solutions of evolution equations”, J. Inverse Ill-posed Probl., 11:1 (2003), 1–26 | DOI | MR | Zbl
[9] Alekseev G. V., Vakhitov I. S., Soboleva O. V., “Stability estimates in identification problems for the convection-diffusion-reaction equation”, Comput. Math. Math. Phys., 52:12 (2012), 1635–1649 | DOI | MR | Zbl | Zbl
[10] Kamynin V. L., “The inverse problem of the simultaneous determination of the right-hand side and the lowest coefficient in parabolic equations with many space variables”, Math. Notes, 97:3 (2015), 349–361 | DOI | DOI | MR | Zbl | Zbl
[11] Kozhanov A. I., “Parabolic equations with unknown time-dependent coefficients”, Comput. Math. Math. Phys., 57:6 (2017), 956–966 | DOI | DOI | MR | Zbl
[12] Sabitov K. B., “Initial boundary and inverse problems for the inhomogeneous equation of a mixed parabolic-hyperbolic equation”, Math. Notes, 102:3 (2017), 378–395 | DOI | DOI | MR | Zbl
[13] Sabitov K. B., Funktsional'nye, differentsial'nye i integral'nye uravneniia [Functional, Differential and Integral Equations], Vysshaya Shkola, Moscow, 2005, 670 pp. (In Russian)
[14] Zhegalov V. I., Sarvarova I. M., “Solvability of the Goursat problem in quadratures”, Russian Math. (Iz. VUZ), 57:3 (2013), 56–59 | DOI | MR | Zbl
[15] Zhegalov V. I., Sozontova E. A., “An addition to the cases of solvability of the Goursat problem in quadratures”, Differ. Equ., 53:2 (2017), 270–272 | DOI | DOI | MR | Zbl