On a proplem for generalized Boussinesq--Love equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 771-776.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fourth-order equation with two independent variables a variant of the Goursat problem with data on two intersecting characteristics is considered. It includes not only the construction of the desired function, but also the coefficients of the equation. Thus, we are talking about the inverse problem of determining the coefficients of the equation. The method of construction of conditions providing allocation of infinite number of sets of this type equations is offered, for which the problem under consideration is solvable in quadratures. Instead of introducing additional boundary conditions, restrictions on the structure of the equation are proposed, related to the possibilities of its factorization.
Mots-clés : Goursat problem, inverse problem, method of cascade integration, Riemann method, factorization.
@article{VSGTU_2019_23_4_a10,
     author = {V. I. Zhegalov},
     title = {On a proplem for generalized {Boussinesq--Love} equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {771--776},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_4_a10/}
}
TY  - JOUR
AU  - V. I. Zhegalov
TI  - On a proplem for generalized Boussinesq--Love equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 771
EP  - 776
VL  - 23
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_4_a10/
LA  - ru
ID  - VSGTU_2019_23_4_a10
ER  - 
%0 Journal Article
%A V. I. Zhegalov
%T On a proplem for generalized Boussinesq--Love equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 771-776
%V 23
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_4_a10/
%G ru
%F VSGTU_2019_23_4_a10
V. I. Zhegalov. On a proplem for generalized Boussinesq--Love equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 771-776. https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_4_a10/

[1] Soldatov A. P., Shkhanukov M. Kh., “Boundary-value-problems with a Samarsky, A. A. general nonlocal condition for higher-order pseudoparabolic equations”, Dokl. Math., 36:3 (1988), 507–511 | MR | Zbl

[2] Serdyukova S. I., “Exotic asymptotics for a linear hyperbolic equation”, Dokl. Math., 67:2 (2003), 203–207 | MR | Zbl

[3] Zhegalov V. I., Mironov A. N., Differentsial'nye uravneniia so starshimi chastnymi proizvodnymi [Differential Equations with Highest Partial Derivatives], Kazan Math. Society, Kazan, 2001, 226 pp. (In Russian) | Zbl

[4] Zhegalov V. I., Mironov A. N., Utkina E. A., Uravneniia s dominiruiushchei chastnoi proizvodnoi [Equations with Dominant Partial Derivative], Kazan Univ., Kazan, 2014, 385 pp. (In Russian)

[5] Mironov A. N., “On the Riemann method for solving the Cauchy problem”, Russian Math. (Iz. VUZ), 49:2 (2005), 32–41 | MR

[6] Mironov A. N., Mironova L. B., “Laplace invariants for a generalized Boussinesq–Love equation”, Differ. Equ., 51:1 (2015), 132–137 | DOI | DOI | MR | Zbl

[7] Anikonov Yu. E., Belov Yu. Ya., “Determining two unknown coefficients of parabolic type equation”, J. Inverse Ill-posed Probl., 9:5 (2001), 469–487 | DOI | MR | Zbl

[8] Anikonov Yu. E., “Inverse problems and classes of solutions of evolution equations”, J. Inverse Ill-posed Probl., 11:1 (2003), 1–26 | DOI | MR | Zbl

[9] Alekseev G. V., Vakhitov I. S., Soboleva O. V., “Stability estimates in identification problems for the convection-diffusion-reaction equation”, Comput. Math. Math. Phys., 52:12 (2012), 1635–1649 | DOI | MR | Zbl | Zbl

[10] Kamynin V. L., “The inverse problem of the simultaneous determination of the right-hand side and the lowest coefficient in parabolic equations with many space variables”, Math. Notes, 97:3 (2015), 349–361 | DOI | DOI | MR | Zbl | Zbl

[11] Kozhanov A. I., “Parabolic equations with unknown time-dependent coefficients”, Comput. Math. Math. Phys., 57:6 (2017), 956–966 | DOI | DOI | MR | Zbl

[12] Sabitov K. B., “Initial boundary and inverse problems for the inhomogeneous equation of a mixed parabolic-hyperbolic equation”, Math. Notes, 102:3 (2017), 378–395 | DOI | DOI | MR | Zbl

[13] Sabitov K. B., Funktsional'nye, differentsial'nye i integral'nye uravneniia [Functional, Differential and Integral Equations], Vysshaya Shkola, Moscow, 2005, 670 pp. (In Russian)

[14] Zhegalov V. I., Sarvarova I. M., “Solvability of the Goursat problem in quadratures”, Russian Math. (Iz. VUZ), 57:3 (2013), 56–59 | DOI | MR | Zbl

[15] Zhegalov V. I., Sozontova E. A., “An addition to the cases of solvability of the Goursat problem in quadratures”, Differ. Equ., 53:2 (2017), 270–272 | DOI | DOI | MR | Zbl