Comparison of various mathematical models on the example of solving the equations of the movement of large planets and the Moon
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 152-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the accuracy of solving various differential equations describing the motion of large planets, the Moon and Sun. On the time interval from 31 years BC to 3969 AD, the numerical integration of Newtonian relativistic differential equations and equations obtained on the basis of the interaction of the surrounding space with moving material bodies was carried out. The range of applicability of the considered differential equations for the investigated objects is revealed. By comparing of the coordinates of the Moon, found by solving various differential equations and the DE405 data bank, it is shown that the greatest accuracy in the elements of the orbits of large planets is achieved by solving differential equations obtained on the basis of the interaction of the surrounding space with moving material bodies. The solution of relativistic equations provides high accuracy of the orbit elements for Mercury and the outer planets throughout the integration interval. However, for the remaining inner planets and the Moon, the accuracy of the orbital elements obtained by solving relativistic equations is comparable to the accuracy obtained by solving Newton equations. It is believed that the use of the harmonic coordinate system is justified only for Mercury from the point of view of the velocity of the secular longitude displacement of its perihelion, but for other internal planets (the Venus, Earth Moon, and Mars) the velocities of secular displacements of the longitude of the perihelion's are overstated. It is shown that the solution of differential equations obtained on the basis of the interaction of the surrounding space with moving material bodies ensures a high accuracy of obtaining orbital elements for all objects under consideration on the time interval under study.
Mots-clés : orbital elements, numerical integration, differential equation of motion.
@article{VSGTU_2019_23_1_a8,
     author = {A. F. Zausaev and M. A. Romanyuk},
     title = {Comparison of various mathematical models on the example of solving the equations of the movement of large planets and the {Moon}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {152--185},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_1_a8/}
}
TY  - JOUR
AU  - A. F. Zausaev
AU  - M. A. Romanyuk
TI  - Comparison of various mathematical models on the example of solving the equations of the movement of large planets and the Moon
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 152
EP  - 185
VL  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_1_a8/
LA  - ru
ID  - VSGTU_2019_23_1_a8
ER  - 
%0 Journal Article
%A A. F. Zausaev
%A M. A. Romanyuk
%T Comparison of various mathematical models on the example of solving the equations of the movement of large planets and the Moon
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 152-185
%V 23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_1_a8/
%G ru
%F VSGTU_2019_23_1_a8
A. F. Zausaev; M. A. Romanyuk. Comparison of various mathematical models on the example of solving the equations of the movement of large planets and the Moon. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 1, pp. 152-185. https://geodesic-test.mathdoc.fr/item/VSGTU_2019_23_1_a8/

[1] Chebotarev G. A., Analytical and Numerical Methods of Celestial Mechanics, Modern Analytic and Computational Methods in Science and Mathematics, 9, American Elsevier Publishing Co., Inc., 1967, xviii+331 pp. | MR | MR | Zbl

[2] Subbotin M. F., Vvedenie v teoreticheskuiu astronomiiu [Introduction to theoretical astronomy], Nauka, Moscow, 1968, 800 pp. (In Russian)

[3] Newhall X. X., Standish E M., Williams J. G., “DE 102: A numerically integrated ephemeris of the Moon and planets spanning forty-four centuries”, Astron. Astrophys., 125:1 (1983), 150–167 | Zbl

[4] Zausaev A. F., Zausaev A. A., Matematicheskoe modelirovanie orbital'noi evoliutsii malykh tel Solnechnoi sistemy [Mathematical modelling of orbital evolution of small bodies of the Solar system], Mashinostroenie-1, Moscow, 2008, 250 pp. (In Russian)

[5] Zausaev A. F., “The Investigation of the Motion of Planets, the Moon, and the Sun Based on a New Principle of Interaction”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 3(36), 118–131 (In Russian) | DOI | Zbl

[6] Zausaev A. F., “Comparison of the coordinates of the major planets, the Moon, and the Sun obtained based on a new principle of interaction and of the data bank DE405”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 121–148 (In Russian) | DOI | Zbl

[7] Zausaev A. F., Romaniuk M. A., Chislennye metody v zadachakh matematicheskogo modelirovaniia dvizheniia nebesnykh tel v Solnechnoi sisteme [Numerical methods in problems of mathematical modeling of motion of celestial bodies in the Solar system], Samara State Technical Univ., Samara, 2017, 265 pp. (In Russian)

[8] Krasinskii G. A., Piteva E. V., Sveshnikov M. L., Sveshnikova E. S., “Improvement of the ephemerides of the inner planets and the moon using radar, laser, and meridian measurements during 1961-1980”, Institut Teoreticheskoi Astronomii, Biulleten, 15:3 (1982), 145–163 (In Russian)

[9] Zausaev A. F., Zausaev A. A., Ol'khin A. G., “The numerical integration of the equations of motion for large planets (Mercury and Pluto) and Moon with the radar observations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2004, no. 26, 43–47 (In Russian) | DOI

[10] Zausaev A. F., “Theory of motion of $n$ material bodies, based on a new interaction principle”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2006, no. 43, 132–139 (In Russian) | DOI

[11] Standish E. M., JPL Planetary and Lunar Ephemerides, DE405/LE405. Interoffice memorandum: JPL IOM 312. F–98-048, 1998, August 26, 18 pp. ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf

[12] Pitjeva E. V., “Modern numerical ephemerides of the Sun, the Moon and majorplanets”, Efemeridnaia astronomiia [Ephemeris Astronomy], Proc. of IPA RAS, 10, IPA RAS, Moscow, 112–134 (In Russian)

[13] Pitjeva E. V., “High-precision ephemerides of planets-EPM and determination of some astronomical constants”, Solar System Research, 39:3 (2005), 176–186 | DOI

[14] Pitjeva E. V., Bratseva O. A., Panfilov V. E., “EPM — Ephemerides of Planets and the Moon of IAA RAS: Their model, accuracy, availability”, Proc. of the Journées 2010 “Systèmes de Référence Spatio-Temporels” (JSR2010): New challenges for reference systems and numerical standards in astronomy (Observatoire de Paris, 20–22 September 2010), ed. N. Capitaine, 2010, 49–54

[15] Pitjeva E. V., Pitjev N. P., “Development of planetary ephemerides EPM and their applications”, Celest. Mech. Dyn. Astr., 119:3 (2014), 237–256 | DOI

[16] Simon J.-L., Francou G., Fienga A., Manche H., “New analytical planetary theories VSOP2013 and TOP2013”, Astron. Astrophys., 557 (2013), A49 | DOI

[17] Folkner W. M., Williams J. G., Boggs D. H., Park R. S., Kuchynka P., The Planetary and Lunar Ephemerides DE430 and DE431, IPN Progress Report, 42–196, 2014, February 15, 81 pp. https://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf

[18] Everhart E., “Implicit single-sequence methods for integrating orbits”, Celestial Mech., 10:1 (1974), 35–55 | DOI | MR | Zbl

[19] Vizgin V. P., Reliativistskaia teoriia tiagoteniia (istoki i formirovanie, 1900–1915) [The relativistic theory of gravitation. Sources and formation, 1900–1915], Nauka, Moscow, 1981, 352 pp. (In Russian) | MR | Zbl

[20] Le Verrier U. J., Theorie du movement de Mercure, Annales de l'Observatoire imperial de Paris, 5, Annales de l'Observatoire de Paris. Memoires, Mallet-Bachelier, Paris, 1859, 195 pp.

[21] Roseveare N. T., Mercury's perihelion from Le Verrier to Einstein, Clarendon Press, Oxford, 1982, viii+208 pp. | Zbl

[22] Bogorodsky A. F., Vsemirnoe tiagotenie [Universal Gravitation], Naukova Dumka, Kiev, 1971, 352 pp. (In Russian)

[23] Brumberg V. A., Reliativistskaia nebesnaia mekhanika [Relativistic Celestial Mechanics], Nauka, Moscow, 1972, 384 pp. (In Russian) ; Кислик М. Д., Колюка Ю. Ф., Котельников В. А., Петров Г. М., Тихонов В. Ф., “Единая релятивистская теория движения внутренних планет Солнечной системы. Релятивистские эффекты при определении орбит планет по радиолокационным наблюдениям”, Научная сессия Отделения общей физики и астрономии и Отделения ядерной физики Академии наук СССР (26–27 ноября 1980 г.), УФН, 134:1 (1981), 165–166 | MR | DOI

[24] “A Unified Relativistic Theory of the Motion of the Inner Planets of the Solar System”, Proceedings of the USSR Academy of Sciences, 255:3 (1980), 545–547 (In Russian) | DOI | DOI

[25] Kislik M. D., Kolyuka Yu. F., Kotel'nikov V. A., Tikhonov V. F., “A Unified Relativistic Theory of the Motion of the Inner Planets of the Solar System. Relativistic Effects in Determination of the Orbits of the Planets from Radar Observations”, Sov. Phys. Usp., 24:1 (1981), 437–438 | DOI | DOI

[26] Kislik M. D., “Relativistic effects in radar determinations of planetary orbits”, Soviet Astronomy Letters, 7:1 (1981), 31–34