Modeling of steady creep of 3D reinforced metal-composits with anisotropy of phase materials
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 92-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

The iteration model describing mechanical behavior of cross-reinforced in the space metal-composites with steady-state anisotropic creep is presented. The comparative analysis of the calculations on different structural models of mechanical behavior of cross-reinforced in plane and in space metal-composites with steady-state creep is carried out.
Mots-clés : metal-composite, 3D reinforcement, steady creep, anisotropy, structural theory.
@article{VSGTU_2012_1_a8,
     author = {A. P. Yankovskii},
     title = {Modeling of steady creep of {3D} reinforced metal-composits with anisotropy of phase materials},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {92--109},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/VSGTU_2012_1_a8/}
}
TY  - JOUR
AU  - A. P. Yankovskii
TI  - Modeling of steady creep of 3D reinforced metal-composits with anisotropy of phase materials
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 92
EP  - 109
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/VSGTU_2012_1_a8/
LA  - ru
ID  - VSGTU_2012_1_a8
ER  - 
%0 Journal Article
%A A. P. Yankovskii
%T Modeling of steady creep of 3D reinforced metal-composits with anisotropy of phase materials
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 92-109
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/VSGTU_2012_1_a8/
%G ru
%F VSGTU_2012_1_a8
A. P. Yankovskii. Modeling of steady creep of 3D reinforced metal-composits with anisotropy of phase materials. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2012), pp. 92-109. https://geodesic-test.mathdoc.fr/item/VSGTU_2012_1_a8/

[1] Tarnopolsky Yu. M., Zhigun I. G., Polyakov V. A., Spatial-Reinforced Composite Materials, Handbook, Mashinostrocnie, Moscow, 1987, 224 pp.

[2] Mohamed M. H., Bogdanovich A. E., Dickinson L. C., Singletary J. N., Lienhart R. R., “A New Generation of 3D Woven Fabric Preforms an Composites”, SAMPE J., 37:3 (2001), 8–17

[3] Rabotnov Yu. N., Creep of Structural Elements, Nauka, Moscow, 1966, 752 pp. | Zbl

[4] Reznikov B. S., Nikitenko A. F., Kucherenko I. V., “Steady creep of micrononuniform media”, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 1, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2007, 219–223

[5] Karimbaev T. D., Myktybekov B. M., Panova I. M., Mathematical models of nonlinear deformation of unidirectionally reinforced composite materials, Trudy CIAM, 1334, CIAM, Moscow, 2005, 160 pp.

[6] Nemirovskii Yu. V., “Creep of homogeneous and composite shells”, Topical Problems of the Mechanics of Shells, Trans. Int. Conf. Dedicated to the 100th Birthday of Prof. Kh. M. Mushtari, 90th Birthday of Prof. K. Z. Galimov, and 80th Birthday of Prof. M. S. Kornishin (Kazan', 26–30 June, 2000), Novoe Znanie, Kazan', 2000, 42–49

[7] Malmeister A. K., Tamuzh V. P., Teters G. A., Strength of Polymer and Composite Materials, Zinatne, Riga, 1972, 500 pp.

[8] Kachanov L. M., Creep Theory, Fizmatgiz, Moscow, 1960, 456 pp.

[9] Il'yushin A. A., Works, v. 3, Theory of Thermoviscoelasticity, eds. E. A. Il'yushin, V. G. Tunguskov, Fizmatlit, Moscow, 2007, 288 pp.

[10] Nemirovsky Yu. N., Yankovsky A. P., “Effective physicomechanical characteristics of composites unidirectionally reinforced with transversely isotropic fibers. Report 1: Model of a reinforced medium”, Izv. vuzov. Stroitel'stvo, 2006, no. 5, 16–24

[11] Nemirovsky Yu. N., Yankovsky A. P., “Determination of the effective physicomechanical characteristics of hybrid composites cross-reinforced with transversely isotropic fibers and a comparison of calculated characteristics with experimental data”, Mekh. Kompozits. Mater. Konstr., 43:1 (2007), 3–32 | MR

[12] Yankovskii A. P., “Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model”, Mech. Compos. Mater., 46:5 (2010), 451–460 | DOI | MR

[13] Nemirovsky Yu. N., Yankovsky A. P., “Effective physicomechanical characteristics of composites unidirectionally reinforced with transversely isotropic fibers. Report 2: Comparison between calculated characteristics and experimental data”, Izv. vuzov. Stroitel'stvo, 2006, no. 6, 10–19

[14] Yankovskii A. P., “Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 2. Comparison with experiment”, Mech. Compos. Mater., 46:6, 659–666 | DOI

[15] Composite Materials, Handbook, ed. D. M. Karpinos, Naukova Dumka, Kiev, 1985, 592 pp.

[16] Pisarenko G. S., Mozharovskii N. S., Equations and Boundary-Value Problems of the Theory of Plasticity and Creep, Handbook, Naukova Dumka, Kiev, 1981, 496 pp. | MR | Zbl

[17] Yankovskii A. P., “The steady creeping difficulty reinforced the metal-composite plates loaded in the plane”, Mat. Model., 22:8 (2010), 55–66 | Zbl

[18] Nemirovsky Yu. N., Yankovsky A. P., “Numerical simulation of behaviour of the three-dimensional reinforcement composit materials with nonlinear memory”, Numerical methods for solving problems of elasticity and plasticity theory, Parallel', Novosibirsk, 2011, 53