Ribbon Graphs and Belyi Pairs with Partially Prescribed Branching
Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 177-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a ribbon graph of arbitrary genus, we construct a spherical graph with the same two columns of the passport. And given a spherical graph, we present an algorithm for constructing a graph with the two columns of the same passport and any admissible genus. We also discuss possible applications to the theory of dessins d'enfants.
Mots-clés : Belyi pairs, ribbon graphs, monodromy.
@article{TRSPY_2023_320_a7,
     author = {Vik. S. Kulikov and G. B. Shabat},
     title = {Ribbon {Graphs} and {Belyi} {Pairs} with {Partially} {Prescribed} {Branching}},
     journal = {Informatics and Automation},
     pages = {177--188},
     publisher = {mathdoc},
     volume = {320},
     year = {2023},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2023_320_a7/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
AU  - G. B. Shabat
TI  - Ribbon Graphs and Belyi Pairs with Partially Prescribed Branching
JO  - Informatics and Automation
PY  - 2023
SP  - 177
EP  - 188
VL  - 320
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/TRSPY_2023_320_a7/
LA  - ru
ID  - TRSPY_2023_320_a7
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%A G. B. Shabat
%T Ribbon Graphs and Belyi Pairs with Partially Prescribed Branching
%J Informatics and Automation
%D 2023
%P 177-188
%V 320
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/TRSPY_2023_320_a7/
%G ru
%F TRSPY_2023_320_a7
Vik. S. Kulikov; G. B. Shabat. Ribbon Graphs and Belyi Pairs with Partially Prescribed Branching. Informatics and Automation, Algebra and Arithmetic, Algebraic, and Complex Geometry, Tome 320 (2023), pp. 177-188. https://geodesic-test.mathdoc.fr/item/TRSPY_2023_320_a7/

[1] G. V. Belyi, “On Galois extensions of a maximal cyclotomic field”, Math. USSR, Izv., 14:2 (1980), 247–256 | DOI | MR | Zbl | Zbl

[2] Gale D., “A theorem on flows in networks”, Pac. J. Math., 7:2 (1957), 1073–1082 | DOI | MR | Zbl

[3] Grothendieck A., “Esquisse d'un programme (Sketch of a programme)”, Geometric Galois actions. 1: Around Grothendieck's esquisse d'un programme, Proc. Conf. “Geometry and Arithmetic of Moduli Spaces” (Luminy, 1995), LMS Lect. Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997, 5–48, 243–283 | MR | Zbl

[4] Vik. S. Kulikov, “On rigid germs of finite morphisms of smooth surfaces”, Sb. Math., 211:10 (2020), 1354–1381 | DOI | DOI | MR | Zbl

[5] Vik. S. Kulikov, “Rigid germs of finite morphisms of smooth surfaces and rational Belyi pairs”, Sb. Math., 212:9 (2021), 1304–1328 | DOI | DOI | MR | Zbl

[6] Lando S.K., Zvonkin A.K., Graphs on surfaces and their applications, Springer, Berlin, 2004 | MR | Zbl

[7] Musty M., Schiavone S., Sijsling J., Voight J., “A database of Belyi maps”, ANTS XIII: Proc. 13th Algorithmic Number Theory Symposium (Univ. Wisconsin–Madison, 2018), Open Book Ser., 2, Math. Sci. Publ., Berkeley, CA, 2019, 375–392 | DOI | MR

[8] A. N. Paršin, “Algebraic curves over function fields. I”, Math. USSR, Izv., 2:5 (1968), 1145–1170 | DOI | MR | Zbl

[9] Roberts D.P., Hurwitz–Belyi maps, E-print, 2016, arXiv: 1608.08302v1 | MR

[10] Ryser H.J., “Combinatorial properties of matrices of zeros and ones”, Can. J. Math., 9 (1957), 371–377 | DOI | MR | Zbl

[11] Shabat G., “Calculating and drawing Belyi pairs”, J. Math. Sci., 226:5 (2017), 667–693 | DOI | MR | Zbl

[12] Shabat G.B., Voevodsky V.A., “Drawing curves over number fields”, The Grothendieck Festschrift, v. III, Prog. Math., 88, ed. by P. Cartier et al., Birkhäuser, Boston, 1990, 199–227 | MR | Zbl

[13] Shafarevich I.R., “Polya algebraicheskikh chisel”, Proc. Int. Congr. Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 163–176