Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 64-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any flag simplicial complex K, we describe the multigraded Poincaré series, the minimal number of relations, and the degrees of these relations in the Pontryagin algebra of the corresponding moment–angle complex ZK. We compute the LS-category of ZK for flag complexes and give a lower bound in the general case. The key observation is that the Milnor–Moore spectral sequence collapses at the second page for flag K. We also show that the results of Panov and Ray about the Pontryagin algebras of Davis–Januszkiewicz spaces are valid for arbitrary coefficient rings, and introduce the (Z×Z0m)-grading on the Pontryagin algebras which is similar to the multigrading on the cohomology of ZK.
@article{TRSPY_2022_317_a2,
     author = {F. E. Vylegzhanin},
     title = {Pontryagin {Algebras} and the {LS-Category} of {Moment--Angle} {Complexes} in the {Flag} {Case}},
     journal = {Informatics and Automation},
     pages = {64--88},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2022_317_a2/}
}
TY  - JOUR
AU  - F. E. Vylegzhanin
TI  - Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case
JO  - Informatics and Automation
PY  - 2022
SP  - 64
EP  - 88
VL  - 317
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/TRSPY_2022_317_a2/
LA  - ru
ID  - TRSPY_2022_317_a2
ER  - 
%0 Journal Article
%A F. E. Vylegzhanin
%T Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case
%J Informatics and Automation
%D 2022
%P 64-88
%V 317
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/TRSPY_2022_317_a2/
%G ru
%F TRSPY_2022_317_a2
F. E. Vylegzhanin. Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 64-88. https://geodesic-test.mathdoc.fr/item/TRSPY_2022_317_a2/

[1] Adams J.F., “On the cobar construction”, Proc. Natl. Acad. Sci. USA, 42 (1956), 409–412 | DOI | MR | Zbl

[2] A. A. Aizenberg, “Topological applications of Stanley–Reisner rings of simplicial complexes”, Trans. Moscow Math. Soc., 2012 (2012), 37–65 | MR | Zbl

[3] Aluffi P., Algebra: Chapter 0, Grad. Stud. Math., 104, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[4] Beben P., Grbić J., “LS-category of moment–angle manifolds and higher order Massey products”, Forum math., 33:5 (2021), 1179–1205 | DOI | MR | Zbl

[5] Brown K.S., Cohomology of groups, Grad. Texts Math., 87, Springer, New York, 1982 | DOI | MR | Zbl

[6] V. M. Buchstaber and I. Yu. Limonchenko, “Massey products, toric topology and combinatorics of polytopes”, Izv. Math., 83:6 (2019), 1081–1136 | DOI | MR | Zbl

[7] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[8] Cai Li., Some calculations of the homology of loop spaces of moment–angle complexes using Hall words, Talk at the International Polyhedral Products Seminar (Dec. 16, 2021) http://math.princeton.edu/events/some-calculations-homology-loop-spaces-moment-angle-complexes-using-hall-words-2021-12

[9] Denham G., Suciu A.I., “Moment–angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | DOI | MR | Zbl

[10] Dranishnikov A.N., “Boundaries of Coxeter groups and simplicial complexes with given links”, J. Pure Appl. Algebra, 137:2 (1999), 139–151 | DOI | MR | Zbl

[11] Eilenberg S., Ganea T., “On the Lusternik–Schnirelmann category of abstract groups”, Ann. Math. Ser. 2, 65:3 (1957), 517–518 | DOI | MR | Zbl

[12] Fröberg R., “Determination of a class of Poincaré series”, Math. Scand., 37 (1975), 29–39 | DOI | MR | Zbl

[13] Ganea T., “Lusternik–Schnirelmann category and strong category”, Ill. J. Math., 11:3 (1967), 417–427 | MR | Zbl

[14] Ginsburg M., “On the Lusternik–Schnirelmann category”, Ann. Math. Ser. 2, 77:3 (1963), 538–551 | DOI | MR | Zbl

[15] Grbić J., Panov T., Theriault S., Wu J., “The homotopy types of moment–angle complexes for flag complexes”, Trans. Amer. Math. Soc., 368:9 (2016), 6663–6682 | DOI | MR | Zbl

[16] Grbić J., Simmons G., Ilyasova M., Panov T., “One-relator groups and algebras related to polyhedral products”, Proc. R. Soc. Edinb. Sect. A, 152:1 (2022), 128–147 | DOI | MR | Zbl

[17] Löfwall C., “On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra”, Algebra, algebraic topology and their interactions: Proc. Conf., Stockholm, 1983, Lect. Notes Math., 1183, Springer, Berlin, 1986, 291–338 | DOI | MR

[18] McCleary J., A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, 2nd ed., Cambridge Univ. Press, Cambridge, 2001 | MR

[19] Milnor J., “Construction of universal bundles. II”, Ann. Math. Ser. 2, 63:3 (1956), 430–436 | DOI | MR | Zbl

[20] Milnor J.W., Moore J.C., “On the structure of Hopf algebras”, Ann. Math. Ser. 2, 81:2 (1965), 211–264 | DOI | MR | Zbl

[21] Panov T.E., Ray N., “Categorical aspects of toric topology”, Toric topology: Proc. Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 293–322 | DOI | MR | Zbl

[22] Panov T., Theriault S., “The homotopy theory of polyhedral products associated with flag complexes”, Compos. math., 155:1 (2019), 206–228 | DOI | MR | Zbl

[23] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | DOI | MR | Zbl

[24] Priddy S.B., “Koszul resolutions”, Trans. Amer. Math. Soc., 152 (1970), 39–60 | DOI | MR | Zbl

[25] Swan R.G., “Groups of cohomological dimension one”, J. Algebra, 12:4 (1969), 585–610 | DOI | MR | Zbl

[26] Toomer G.H., “Lusternik–Schnirelmann category and the Moore spectral sequence”, Math. Z., 138 (1974), 123–143 | DOI | MR | Zbl

[27] Ustinovskiy Yu., “On face numbers of flag simplicial complexes”, Discrete Comput. Geom., 60:3 (2018), 688–697 | DOI | MR | Zbl

[28] Wall C.T.C., “Generators and relations for the Steenrod algebra”, Ann. Math. Ser. 2, 72:3 (1960), 429–444 | DOI | MR | Zbl