Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a5, author = {S. V. Bochkarev}, title = {Inequalities for {Orthogonal} {Series} and a {Strengthening} of the {Carleman--Olevskii} {Theorem} for {Complete} {Orthonormal} {Systems}}, journal = {Informatics and Automation}, pages = {111--130}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2021_312_a5/} }
TY - JOUR AU - S. V. Bochkarev TI - Inequalities for Orthogonal Series and a Strengthening of the Carleman--Olevskii Theorem for Complete Orthonormal Systems JO - Informatics and Automation PY - 2021 SP - 111 EP - 130 VL - 312 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/TRSPY_2021_312_a5/ LA - ru ID - TRSPY_2021_312_a5 ER -
%0 Journal Article %A S. V. Bochkarev %T Inequalities for Orthogonal Series and a Strengthening of the Carleman--Olevskii Theorem for Complete Orthonormal Systems %J Informatics and Automation %D 2021 %P 111-130 %V 312 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/TRSPY_2021_312_a5/ %G ru %F TRSPY_2021_312_a5
S. V. Bochkarev. Inequalities for Orthogonal Series and a Strengthening of the Carleman--Olevskii Theorem for Complete Orthonormal Systems. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 111-130. https://geodesic-test.mathdoc.fr/item/TRSPY_2021_312_a5/
[1] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundl. Math. Wiss., 223, Springer, Berlin, 1976 | Zbl
[2] S. V. Bochkarev, “Unconditional convergence almost everywhere of Fourier series of continuous functions in the Haar system”, Math. Notes, 4:2 (1968), 618–623 | DOI | MR | Zbl
[3] S. V. Bochkarev, “Absolute convergence of Fourier series with respect to complete orthonormal systems”, Russ. Math. Surv., 27:2 (1972), 55–81 | DOI | MR | MR
[4] S. V. Bochkarev, “Inequalities for orthogonal series and a strengthening of Carleman's and Orlicz's theorems”, Dokl. Math., 61:2 (2000), 165–168 | MR | Zbl
[5] Carleman T., “Über die Fourierkoeffizienten einer stetigen Funktion”, Acta math., 41 (1918), 377–384 | DOI | MR | Zbl
[6] De Leeuw K., Katznelson Y., Kahane J.-P., “Sur les coefficients de Fourier des fonctions continues”, C. r. Acad. sci. Paris A, 285:16 (1977), 1001–1003 | MR | Zbl
[7] Dyachenko M.I., Ulyanov P.L., Mera i integral, Faktorial, M., 1998
[8] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monogr., 75, Am. Math. Soc., Providence, RI, 1989 | MR | Zbl
[9] Makhmudov A.S., “O koeffitsientakh Fure i Teilora nepreryvnykh funktsii. III”, Nekotorye voprosy funktsionalnogo analiza i ego primenenii, Izd-vo AN AzSSR, Baku, 1965, 103–117
[10] F. L. Nazarov, “The Bang solution of the coefficient problem”, St. Petersburg Math. J., 9:2 (1998), 407–419 | MR | Zbl
[11] A. M. Olevskii, “Divergent series in $L^2$ with respect to complete systems”, Sov. Math., Dokl., 2 (1961), 669–672
[12] A. M. Olevskii, “Divergent Fourier series for continuous functions”, Sov. Math., Dokl., 2 (1961), 1382–1386 | MR
[13] Olevskii A.M., “Raskhodyaschiesya ryady Fure”, Izv. AN SSSR. Ser. mat., 27:2 (1963), 343–366
[14] Orlicz W., “Zur Theorie der Orthogonalreihen”, Bull. Acad. Pol. A, 1927, 81–115 | Zbl
[15] Orlicz W., “Beiträge zur Theorie der Orthogonalentwicklungen. III”, Bull. Acad. Pol. A, 1932, 229–238
[16] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, North-Holland, Amsterdam, 1978 | MR | Zbl
[17] P. L. Ul'yanov, “The divergence of series obtained using the Haar system and using bases”, Sov. Math., Dokl., 2 (1961), 679–682 | Zbl
[18] P. L. Ul'yanov, “Divergent Fourier series”, Russ. Math. Surv., 16:3 (1961), 1–75 | DOI | MR | Zbl
[19] A. Zygmund, Trigonometric Series, v. 1, 2, Univ. Press, Cambridge, 1959 | MR | Zbl