Inequalities for Orthogonal Series and a Strengthening of the Carleman--Olevskii Theorem for Complete Orthonormal Systems
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 111-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of interpolation theory, several new inequalities are established for both general orthonormal systems and various specific classes of orthonormal systems including the Haar and Franklin systems and wavelets. The solution of the problem of characterizing the Fourier coefficients of continuous functions for general orthonormal systems is completed. For every complete orthonormal system, a continuous function is constructed that generates a universal singularity similar to the one appearing in Carleman's theorem. This result significantly strengthens Olevskii's theorem and turns into Orlicz's theorem at the other end of the power scale. It is proved that the results obtained are, in a sense, final.
Mots-clés : complete orthonormal system, interpolation of spaces and operators, retraction, Carleman's theorem.
@article{TRSPY_2021_312_a5,
     author = {S. V. Bochkarev},
     title = {Inequalities for {Orthogonal} {Series} and a {Strengthening} of the {Carleman--Olevskii} {Theorem} for {Complete} {Orthonormal} {Systems}},
     journal = {Informatics and Automation},
     pages = {111--130},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2021_312_a5/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - Inequalities for Orthogonal Series and a Strengthening of the Carleman--Olevskii Theorem for Complete Orthonormal Systems
JO  - Informatics and Automation
PY  - 2021
SP  - 111
EP  - 130
VL  - 312
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/TRSPY_2021_312_a5/
LA  - ru
ID  - TRSPY_2021_312_a5
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T Inequalities for Orthogonal Series and a Strengthening of the Carleman--Olevskii Theorem for Complete Orthonormal Systems
%J Informatics and Automation
%D 2021
%P 111-130
%V 312
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/TRSPY_2021_312_a5/
%G ru
%F TRSPY_2021_312_a5
S. V. Bochkarev. Inequalities for Orthogonal Series and a Strengthening of the Carleman--Olevskii Theorem for Complete Orthonormal Systems. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 111-130. https://geodesic-test.mathdoc.fr/item/TRSPY_2021_312_a5/

[1] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundl. Math. Wiss., 223, Springer, Berlin, 1976 | Zbl

[2] S. V. Bochkarev, “Unconditional convergence almost everywhere of Fourier series of continuous functions in the Haar system”, Math. Notes, 4:2 (1968), 618–623 | DOI | MR | Zbl

[3] S. V. Bochkarev, “Absolute convergence of Fourier series with respect to complete orthonormal systems”, Russ. Math. Surv., 27:2 (1972), 55–81 | DOI | MR | MR

[4] S. V. Bochkarev, “Inequalities for orthogonal series and a strengthening of Carleman's and Orlicz's theorems”, Dokl. Math., 61:2 (2000), 165–168 | MR | Zbl

[5] Carleman T., “Über die Fourierkoeffizienten einer stetigen Funktion”, Acta math., 41 (1918), 377–384 | DOI | MR | Zbl

[6] De Leeuw K., Katznelson Y., Kahane J.-P., “Sur les coefficients de Fourier des fonctions continues”, C. r. Acad. sci. Paris A, 285:16 (1977), 1001–1003 | MR | Zbl

[7] Dyachenko M.I., Ulyanov P.L., Mera i integral, Faktorial, M., 1998

[8] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monogr., 75, Am. Math. Soc., Providence, RI, 1989 | MR | Zbl

[9] Makhmudov A.S., “O koeffitsientakh Fure i Teilora nepreryvnykh funktsii. III”, Nekotorye voprosy funktsionalnogo analiza i ego primenenii, Izd-vo AN AzSSR, Baku, 1965, 103–117

[10] F. L. Nazarov, “The Bang solution of the coefficient problem”, St. Petersburg Math. J., 9:2 (1998), 407–419 | MR | Zbl

[11] A. M. Olevskii, “Divergent series in $L^2$ with respect to complete systems”, Sov. Math., Dokl., 2 (1961), 669–672

[12] A. M. Olevskii, “Divergent Fourier series for continuous functions”, Sov. Math., Dokl., 2 (1961), 1382–1386 | MR

[13] Olevskii A.M., “Raskhodyaschiesya ryady Fure”, Izv. AN SSSR. Ser. mat., 27:2 (1963), 343–366

[14] Orlicz W., “Zur Theorie der Orthogonalreihen”, Bull. Acad. Pol. A, 1927, 81–115 | Zbl

[15] Orlicz W., “Beiträge zur Theorie der Orthogonalentwicklungen. III”, Bull. Acad. Pol. A, 1932, 229–238

[16] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, North-Holland, Amsterdam, 1978 | MR | Zbl

[17] P. L. Ul'yanov, “The divergence of series obtained using the Haar system and using bases”, Sov. Math., Dokl., 2 (1961), 679–682 | Zbl

[18] P. L. Ul'yanov, “Divergent Fourier series”, Russ. Math. Surv., 16:3 (1961), 1–75 | DOI | MR | Zbl

[19] A. Zygmund, Trigonometric Series, v. 1, 2, Univ. Press, Cambridge, 1959 | MR | Zbl