Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_302_a8, author = {I. A. Dynnikov}, title = {Bounded discrete holomorphic functions on the hyperbolic plane}, journal = {Informatics and Automation}, pages = {202--213}, publisher = {mathdoc}, volume = {302}, year = {2018}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2018_302_a8/} }
I. A. Dynnikov. Bounded discrete holomorphic functions on the hyperbolic plane. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 202-213. https://geodesic-test.mathdoc.fr/item/TRSPY_2018_302_a8/
[1] Benjamini I., Schramm O., “Random walks and harmonic functions on infinite planar graphs using square tilings”, Ann. Probab., 24:3 (1996), 1219–1238 | DOI | MR
[2] Bobenko A., Skopenkov M., “Discrete Riemann surfaces: linear discretization and its convergence”, J. Reine angew. Math., 720 (2016), 217–250 | MR
[3] Chelkak D., Smirnov S., “Discrete complex analysis on isoradial graphs”, Adv. Math., 228:3 (2011), 1590–1630 | DOI | MR
[4] Duffin R. J., “Basic properties of discrete analytic functions”, Duke Math. J., 23 (1956), 335–363 | DOI | MR
[5] Duffin R. J., “Potential theory on a rhombic lattice”, J. Comb. Theory., 5 (1968), 258–272 | DOI | MR
[6] I. A. Dynnikov, “On a new discretization of complex analysis”, Russ. Math. Surv., 70:6 (2015), 1031–1050 | DOI | DOI | MR | MR
[7] Dynnikov I. A., Novikov S. P., “Geometry of the triangle equation on two-manifolds”, Moscow Math. J., 3:2 (2003), 419–438 | MR
[8] D. V. Egorov, “The Riemann–Roch theorem for the Dynnikov–Novikov discrete complex analysis”, Sib. Math. J., 58:1 (2017), 78–79 | DOI | MR
[9] Ferrand J., “Fonctions préharmoniques et fonctions préholomorphes”, Bull. sci. math. Sér. 2, 68 (1944), 152–180 | MR
[10] P. G. Grinevich, R. G. Novikov, “The Cauchy kernel for the Novikov–Dynnikov DN-discrete complex analysis in triangular lattices”, Russ. Math. Surv., 62:4 (2007), 799–801 | DOI | DOI | MR
[11] Isaacs R. P., “A finite difference function theory”, Rev. Univ. Nac. Tucumán. Ser. A, 2 (1941), 177–201 | MR
[12] Mercat C., “Discrete Riemann surfaces and the Ising model”, Commun. Math. Phys., 218:1 (2001), 177–216 | DOI | MR
[13] S. P. Novikov, “New discretization of complex analysis: the Euclidean and hyperbolic planes”, Proc. Steklov Inst. Math., 273 (2011), 238–251 | DOI | MR