Bounded discrete holomorphic functions on the hyperbolic plane
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 202-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, for the discretization of complex analysis introduced earlier by S. P. Novikov and the present author, there exists a rich family of bounded discrete holomorphic functions on the hyperbolic (Lobachevsky) plane endowed with a triangulation by regular triangles whose vertices have even valence. Namely, it is shown that every discrete holomorphic function defined in a bounded convex domain can be extended to a bounded discrete holomorphic function on the whole hyperbolic plane so that the Dirichlet energy be finite.
@article{TRSPY_2018_302_a8,
     author = {I. A. Dynnikov},
     title = {Bounded discrete holomorphic functions on the hyperbolic plane},
     journal = {Informatics and Automation},
     pages = {202--213},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2018_302_a8/}
}
TY  - JOUR
AU  - I. A. Dynnikov
TI  - Bounded discrete holomorphic functions on the hyperbolic plane
JO  - Informatics and Automation
PY  - 2018
SP  - 202
EP  - 213
VL  - 302
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/TRSPY_2018_302_a8/
LA  - ru
ID  - TRSPY_2018_302_a8
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%T Bounded discrete holomorphic functions on the hyperbolic plane
%J Informatics and Automation
%D 2018
%P 202-213
%V 302
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/TRSPY_2018_302_a8/
%G ru
%F TRSPY_2018_302_a8
I. A. Dynnikov. Bounded discrete holomorphic functions on the hyperbolic plane. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 202-213. https://geodesic-test.mathdoc.fr/item/TRSPY_2018_302_a8/

[1] Benjamini I., Schramm O., “Random walks and harmonic functions on infinite planar graphs using square tilings”, Ann. Probab., 24:3 (1996), 1219–1238 | DOI | MR

[2] Bobenko A., Skopenkov M., “Discrete Riemann surfaces: linear discretization and its convergence”, J. Reine angew. Math., 720 (2016), 217–250 | MR

[3] Chelkak D., Smirnov S., “Discrete complex analysis on isoradial graphs”, Adv. Math., 228:3 (2011), 1590–1630 | DOI | MR

[4] Duffin R. J., “Basic properties of discrete analytic functions”, Duke Math. J., 23 (1956), 335–363 | DOI | MR

[5] Duffin R. J., “Potential theory on a rhombic lattice”, J. Comb. Theory., 5 (1968), 258–272 | DOI | MR

[6] I. A. Dynnikov, “On a new discretization of complex analysis”, Russ. Math. Surv., 70:6 (2015), 1031–1050 | DOI | DOI | MR | MR

[7] Dynnikov I. A., Novikov S. P., “Geometry of the triangle equation on two-manifolds”, Moscow Math. J., 3:2 (2003), 419–438 | MR

[8] D. V. Egorov, “The Riemann–Roch theorem for the Dynnikov–Novikov discrete complex analysis”, Sib. Math. J., 58:1 (2017), 78–79 | DOI | MR

[9] Ferrand J., “Fonctions préharmoniques et fonctions préholomorphes”, Bull. sci. math. Sér. 2, 68 (1944), 152–180 | MR

[10] P. G. Grinevich, R. G. Novikov, “The Cauchy kernel for the Novikov–Dynnikov DN-discrete complex analysis in triangular lattices”, Russ. Math. Surv., 62:4 (2007), 799–801 | DOI | DOI | MR

[11] Isaacs R. P., “A finite difference function theory”, Rev. Univ. Nac. Tucumán. Ser. A, 2 (1941), 177–201 | MR

[12] Mercat C., “Discrete Riemann surfaces and the Ising model”, Commun. Math. Phys., 218:1 (2001), 177–216 | DOI | MR

[13] S. P. Novikov, “New discretization of complex analysis: the Euclidean and hyperbolic planes”, Proc. Steklov Inst. Math., 273 (2011), 238–251 | DOI | MR