Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_299_a16, author = {V. G. Zhuravlev}, title = {Simplex--karyon algorithm of multidimensional continued fraction expansion}, journal = {Informatics and Automation}, pages = {283--303}, publisher = {mathdoc}, volume = {299}, year = {2017}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2017_299_a16/} }
V. G. Zhuravlev. Simplex--karyon algorithm of multidimensional continued fraction expansion. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 283-303. https://geodesic-test.mathdoc.fr/item/TRSPY_2017_299_a16/
[1] Arnoux P., Labbé S., On some symmetric multidimensional continued fraction algorithms, E-print, 2015, arXiv: 1508.07814 [math.DS]
[2] Berthé V., Labbé S., “Factor complexity of $S$-adic words generated by the Arnoux–Rauzy–Poincaré algorithm”, Adv. Appl. Math., 63 (2015), 90–130 | DOI | MR | Zbl
[3] Treizième Congrès des mathématiciens scandinaves (Helsinki, 1957), Mercators Tryckeri, Helsinki, 1958, 45–64
[4] Cassaigne J., Un algorithme de fractions continues de complexité linéaire, Talk at the Dyna3S Meeting (Paris, Oct. 12, 2015)
[5] Grabiner D.J., “Farey nets and multidimensional continued fractions”, Monatsh. Math., 114:1 (1992), 35–61 | DOI | MR | Zbl
[6] Mönkemeyer R., “Über Fareynetze in $n$ Dimensionen”, Math. Nachr., 11 (1954), 321–344 | DOI | MR | Zbl
[7] Nogueira A., “The three-dimensional Poincaré continued fraction algorithm”, Isr. J. Math., 90:1–3 (1995), 373–401 | DOI | MR | Zbl
[8] W. M. Schmidt, Diophantine Approximation, Lect. Notes Math., 785, Springer, Berlin, 1980 | MR | MR | Zbl
[9] Schweiger F., Multidimensional continued fractions, Oxford Univ. Press, Oxford, 2000 | MR | Zbl
[10] Selmer E.S., “Continued fractions in several dimensions”, Nordisk Mat. Tidskr., 9 (1961), 37–43 | MR | Zbl
[11] V. G. Zhuravlev, “Two-dimensional approximations by the method of dividing toric tilings”, J. Math. Sci., 217:1 (2016), 54–64 | DOI | MR | Zbl
[12] V. G. Zhuravlev, “Differentiation of induced toric tiling and multidimensional approximations of algebraic numbers”, J. Math. Sci., 222:5 (2017), 544–584 | DOI | MR | Zbl
[13] V. G. Zhuravlev, “Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions”, J. Math. Sci., 225:6 (2017), 924–949 | DOI | MR | Zbl
[14] V. G. Zhuravlev, “Periodic karyon expansions of cubic irrationals in continued fractions”, Proc. Steklov Inst. Math., 296, Suppl. 2 (2017), 36–60 | DOI | DOI | MR