Continuous homomorphisms between algebras of iterated Laurent series over a~ring
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 54-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study continuous homomorphisms between algebras of iterated Laurent series over a commutative ring. We give a full description of such homomorphisms in terms of discrete data determined by the images of parameters. In similar terms, we give a criterion of invertibility of an endomorphism and provide an explicit formula for the inverse endomorphism. We also study the behavior of the higher dimensional residue under continuous homomorphisms.
@article{TRSPY_2016_294_a2,
     author = {Sergey O. Gorchinskiy and Denis V. Osipov},
     title = {Continuous homomorphisms between algebras of iterated {Laurent} series over a~ring},
     journal = {Informatics and Automation},
     pages = {54--75},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2016_294_a2/}
}
TY  - JOUR
AU  - Sergey O. Gorchinskiy
AU  - Denis V. Osipov
TI  - Continuous homomorphisms between algebras of iterated Laurent series over a~ring
JO  - Informatics and Automation
PY  - 2016
SP  - 54
EP  - 75
VL  - 294
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/TRSPY_2016_294_a2/
LA  - ru
ID  - TRSPY_2016_294_a2
ER  - 
%0 Journal Article
%A Sergey O. Gorchinskiy
%A Denis V. Osipov
%T Continuous homomorphisms between algebras of iterated Laurent series over a~ring
%J Informatics and Automation
%D 2016
%P 54-75
%V 294
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/TRSPY_2016_294_a2/
%G ru
%F TRSPY_2016_294_a2
Sergey O. Gorchinskiy; Denis V. Osipov. Continuous homomorphisms between algebras of iterated Laurent series over a~ring. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 54-75. https://geodesic-test.mathdoc.fr/item/TRSPY_2016_294_a2/

[1] Contou-Carrère C., “Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré”, C. r. Acad. sci. Paris. Sér. I, 318:8 (1994), 743–746 | MR | Zbl

[2] Contou-Carrère C., “Jacobienne locale d'une courbe formelle relative”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 1–106 | DOI | MR | Zbl

[3] Duistermaat J. J., van der Kallen W., “Constant terms in powers of a Laurent polynomial”, Indag. math. New Ser., 9:2 (1998), 221–231 | DOI | MR | Zbl

[4] Fesenko I. B., Vostokov S. V., Local fields and their extensions, Transl. Math. Monogr., 121, 2nd ed., Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[5] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Math. Surv. Monogr., 88, 2nd ed., Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[6] Gorchinskii S. O., Osipov D. V., “Yavnaya formula dlya mnogomernogo simvola Kontu-Karrera”, UMN, 70:1 (2015), 183–184 | DOI | MR | Zbl

[7] Gorchinskii S. O., Osipov D. V., “Kasatelnoe prostranstvo k $K$-gruppam Milnora kolets”, Tr. MIAN, 290, 2015, 34–42 | DOI | MR

[8] Gorchinskii S. O., Osipov D. V., “Mnogomernyi simvol Kontu-Karrera: lokalnaya teoriya”, Mat. sb., 206:9 (2015), 21–98 | DOI | MR | Zbl

[9] Gorchinskii S. O., Osipov D. V., “Mnogomernyi simvol Kontu-Karrera i nepreryvnye avtomorfizmy”, Funkts. analiz i ego pril., 2016 (to appear)

[10] Lomadze V. G., “O vychetakh v algebraicheskoi geometrii”, Izv. AN SSSR. Ser. mat., 45:6 (1981), 1258–1287 | MR | Zbl

[11] Morava J., “An algebraic analog of the Virasoro group”, Czech. J. Phys., 51:12 (2001), 1395–1400 | DOI | MR | Zbl

[12] Muñoz Porras J. M., Plaza Martín F. J., “Automorphism group of $k((t))$: Applications to the bosonic string”, Commun. Math. Phys., 216:3 (2001), 609–634 | DOI | MR | Zbl

[13] Osipov D. V., “$n$-Dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, LMS Lect. Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | MR | Zbl

[14] Osipov D., Zhu X., “The two-dimensional Contou-Carrère symbol and reciprocity laws”, J. Algebr. Geom., 25 (2016), 703–774 ; arXiv: 1305.6032v2[math.AG] | DOI | Zbl

[15] Parshin A. N., “K arifmetike dvumernykh skhem. I: Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40:4 (1976), 736–773 | MR | Zbl

[16] Parshin A. N., “Lokalnaya teoriya polei klassov”, Tr. MIAN, 165, 1984, 143–170 | MR | Zbl

[17] Przyjalkowski V., “On Landau–Ginzburg models for Fano varieties”, Commun. Number Theory Phys., 1:4 (2007), 713–728 | DOI | MR

[18] Przhiyalkovskii V. V., Shramov K. A., “O slabykh modelyakh Landau–Ginzburga dlya polnykh peresechenii v grassmanianakh”, UMN, 69:6 (2014), 181–182 | DOI | MR | Zbl

[19] Przhiyalkovskii V. V., Shramov K. A., “Fenomen Lorana dlya modelei Landau–Ginzburga polnykh peresechenii v grassmanianakh”, Tr. MIAN, 290, 2015, 102–113 | DOI

[20] Przyjalkowski V., Shramov C., “On Hodge numbers of complete intersections and Landau–Ginzburg models”, Int. Math. Res. Not., 2015:21 (2015), 11302–11332 | DOI | MR | Zbl

[21] Serr Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[22] Yekutieli A., An explicit construction of the Grothendieck residue complex, With an appendix by P. Sastry, Astérisque, 208, Soc. math. France, Paris, 1992 | MR | Zbl