Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2013_282_a11, author = {Xingang Liang and Quansheng Liu}, title = {Weighted moments of the limit of a~branching process in a~random environment}, journal = {Informatics and Automation}, pages = {135--153}, publisher = {mathdoc}, volume = {282}, year = {2013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2013_282_a11/} }
TY - JOUR AU - Xingang Liang AU - Quansheng Liu TI - Weighted moments of the limit of a~branching process in a~random environment JO - Informatics and Automation PY - 2013 SP - 135 EP - 153 VL - 282 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/TRSPY_2013_282_a11/ LA - en ID - TRSPY_2013_282_a11 ER -
Xingang Liang; Quansheng Liu. Weighted moments of the limit of a~branching process in a~random environment. Informatics and Automation, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 135-153. https://geodesic-test.mathdoc.fr/item/TRSPY_2013_282_a11/
[1] Afanasyev V.I., “On the maximum of a subcritical branching process in a random environment”, Stoch. Processes Appl., 93 (2001), 87–107 | DOI | MR | Zbl
[2] Alsmeyer G., Iksanov A., “A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks”, Electron. J. Probab., 14 (2009), 289–313 | DOI | MR | Zbl
[3] Alsmeyer G., Kuhlbusch D., “Double martingale structure and existence of $\phi $-moments for weighted branching processes”, Münster J. Math., 3 (2010), 163–212 | MR | Zbl
[4] Alsmeyer G., Rösler U., “On the existence of $\phi $-moments of the limit of a normalized supercritical Galton–Watson process”, J. Theor. Probab., 17 (2004), 905–928 | DOI | MR | Zbl
[5] Athreya K.B., Karlin S., “On branching processes with random environments. I: Extinction probabilities”, Ann. Math. Stat., 42 (1971), 1499–1520 | DOI | MR | Zbl
[6] Athreya K.B., Karlin S., “On branching processes with random environments. II: Limit theorems”, Ann. Math. Stat., 42 (1971), 1843–1858 | DOI | MR | Zbl
[7] Athreya K.B., Ney P.E., Branching processes, Springer, Berlin, 1972 | MR | Zbl
[8] Baum L.E., Katz M., “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl
[9] Bingham N.H., Doney R.A., “Asymptotic properties of supercritical branching processes. I: The Galton–Watson process”, Adv. Appl. Probab., 6 (1974), 711–731 | DOI | MR | Zbl
[10] Bingham N.H., Doney R.A., “Asymptotic properties of supercritical branching processes. II: Crump–Mode and Jirina processes”, Adv. Appl. Probab., 7 (1975), 66–82 | DOI | MR
[11] Bingham N.H., Goldie C.M., Teugels J.L., Regular variation, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[12] Chow Y.S., Teicher H., Probability theory: Independence, interchangeability, martingales, Springer, New York, 1995
[13] Erdős P., “On a theorem of Hsu and Robbins”, Ann. Math. Stat., 20 (1949), 286–291 | DOI | MR | Zbl
[14] Guivarc'h Y., Liu Q., “Propriétés asymptotiques des processus de branchement en environnement aléatoire”, C. r. Acad. sci. Paris. Ser. 1: Math., 332 (2001), 339–344 | DOI | MR | Zbl
[15] Harris T.E., The theory of branching processes, Springer, Berlin, 1963 | MR | Zbl
[16] Heyde C.C., “Two probability theorems and their application to some first passage problems”, J. Aust. Math. Soc., 4 (1964), 214–222 | DOI | MR | Zbl
[17] Heyde C.C., “Some renewal theorems with application to a first passage problem”, Ann. Math. Stat., 37 (1966), 699–710 | DOI | MR | Zbl
[18] Hsu P.L., Robbins H., “Complete convergence and the law of large numbers”, Proc. Natl. Acad. Sci. USA, 33 (1947), 25–31 | DOI | MR | Zbl
[19] Iksanov A.M., “On some moments of the limit random variable for a normalized supercritical Galton–Watson process”, Focus on probability theory, eds. L.R. Velle, Nova Sci. Publ., New York, 2006, 127–134 | MR
[20] Iksanov A.M., Rösler U., “Some moment results about the limit of a martingale related to the supercritical branching random walk and perpetuities”, Ukr. Math. J., 58 (2006), 505–528 | DOI | MR | Zbl
[21] Kesten H., Maller R.A., “Two renewal theorems for general random walks tending to infinity”, Probab. Theory Relat. Fields, 106 (1996), 1–38 | DOI | MR | Zbl
[22] Kesten H., Stigum B.P., “A limit theorem for multidimensional Galton–Watson processes”, Ann. Math. Stat., 37 (1966), 1211–1223 | DOI | MR | Zbl
[23] Kuhlbusch D., “On weighted branching processes in random environment”, Stoch. Processes Appl., 109 (2004), 113–144 | DOI | MR | Zbl
[24] Liang X., Liu Q., Weighted moments for Mandelbrot's martingales in random environments, Preprint, Univ. Bretagne-Sud, UMR 6205, LMBA, Vannes, 2013
[25] Tanny D., “A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means”, Stoch. Processes Appl., 28 (1988), 123–139 | DOI | MR | Zbl
[26] Topchii V.A., Vatutin V.A., “Maximum of the critical Galton–Watson processes and left-continuous random walks”, Theory Probab. Appl., 42 (1998), 17–27 | DOI | DOI | MR | Zbl