On the closability and convergence of Dirichlet forms
Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 220-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a measure μ on R2 for which the gradient quadratic form is closable, whereas partial quadratic forms are not closable. We obtain new sufficient conditions for the Mosco convergence of Dirichlet forms. This gives effective conditions for the weak convergence of finite-dimensional distributions of diffusion processes.
@article{TRSPY_2010_270_a15,
     author = {O. V. Pugachev},
     title = {On the closability and convergence of {Dirichlet} forms},
     journal = {Informatics and Automation},
     pages = {220--225},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2010_270_a15/}
}
TY  - JOUR
AU  - O. V. Pugachev
TI  - On the closability and convergence of Dirichlet forms
JO  - Informatics and Automation
PY  - 2010
SP  - 220
EP  - 225
VL  - 270
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/TRSPY_2010_270_a15/
LA  - ru
ID  - TRSPY_2010_270_a15
ER  - 
%0 Journal Article
%A O. V. Pugachev
%T On the closability and convergence of Dirichlet forms
%J Informatics and Automation
%D 2010
%P 220-225
%V 270
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/TRSPY_2010_270_a15/
%G ru
%F TRSPY_2010_270_a15
O. V. Pugachev. On the closability and convergence of Dirichlet forms. Informatics and Automation, Differential equations and dynamical systems, Tome 270 (2010), pp. 220-225. https://geodesic-test.mathdoc.fr/item/TRSPY_2010_270_a15/

[1] Zhikov V.V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. mat., 50:4 (1986), 675–710 | MR | Zbl

[2] Zhikov V.V., “Asimptoticheskie zadachi, svyazannye s uravneniem teploprovodnosti v perforirovannykh oblastyakh”, Mat. sb., 181:10 (1990), 1283–1305 | Zbl

[3] Zhikov V.V., Kozlov S.M., Oleinik O.A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[4] Zhikov V.V., “O vesovykh sobolevskikh prostranstvakh”, Mat. sb., 189:8 (1998), 27–58 | DOI | MR | Zbl

[5] Pugachev O.V., “O zamykaemosti klassicheskikh form Dirikhle na ploskosti”, DAN, 380:3 (2001), 315–318 | MR | Zbl

[6] Albeverio S., Röckner M., “Classical Dirichlet forms on topological vector spaces—the construction of the associated diffusion process”, Probab. Theory and Relat. Fields., 83 (1989), 405–434 | DOI | MR | Zbl

[7] Albeverio S., Röckner M., “Classical Dirichlet forms on topological vector spaces—Closability and a Cameron–Martin formula”, J. Funct. Anal., 88 (1990), 395–436 | DOI | MR | Zbl

[8] Hamza M., Détermination des formes de Dirichlet sur $\mathbb R^n$, Thèse 3e cycle, Orsay, 1975

[9] Kolesnikov A.V., “Mosco convergence of Dirichlet forms in infinite dimensions with changing reference measures”, J. Funct. Anal., 230 (2006), 382–418 | DOI | MR | Zbl

[10] Kuwae K., Shioya T., “Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry”, Commun. Anal. Geom., 11:4 (2003), 599–673 | DOI | MR | Zbl

[11] Ma Z.-M., Röckner M., An introduction to the theory of (non-symmetric) Dirichlet forms, Springer, Berlin, 1992

[12] Mosco U., “Composite media and asymptotic Dirichlet forms”, J. Funct. Anal., 123 (1994), 368–421 | DOI | MR | Zbl