Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2009_267_a5, author = {A. Gorodetski and V. Kaloshin}, title = {Conservative {Homoclinic} {Bifurcations} and {Some} {Applications}}, journal = {Informatics and Automation}, pages = {82--96}, publisher = {mathdoc}, volume = {267}, year = {2009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2009_267_a5/} }
A. Gorodetski; V. Kaloshin. Conservative Homoclinic Bifurcations and Some Applications. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 82-96. https://geodesic-test.mathdoc.fr/item/TRSPY_2009_267_a5/
[1] Alexeyev V. M., “Sur l'allure finale du mouvement dans le problème des trois corps”, Actes Congr. Intern. Math., V. 2 (Nice, 1970), Gauthier-Villars, Paris, 1971, 893–907 | MR
[2] Arnaud M.-C., Bonatti C., Crovisier S., “Dynamiques symplectiques génériques”, Ergodic Theory and Dyn. Syst., 25:5 (2005), 1401–1436 | DOI | MR | Zbl
[3] Bonatti C., Crovisier S., “Récurrence et généricité”, Invent. math., 158:1 (2004), 33–104 | DOI | MR | Zbl
[4] Bunimovich L. A., “Mushrooms and other billiards with divided phase space”, Chaos, 11 (2001), 802–808 | DOI | MR | Zbl
[5] Chernov V. L., “On separatrix splitting of some quadratic area-preserving maps of the plane”, Regul. and Chaotic Dyn., 3:1 (1998), 49–65 | DOI | MR | Zbl
[6] Chirikov B. V., “A universal instability of many-dimensional oscillator systems”, Phys. Rep., 52 (1979), 263–379 | DOI | MR
[7] Dankowicz H., Holmes P., “The existence of transverse homoclinic points in the Sitnikov problem”, J. Diff. Equat., 116:2 (1995), 468–483 | DOI | MR | Zbl
[8] Donnay V. J., “Geodesic flow on the two-sphere. I: Positive measure entropy”, Ergodic Theory and Dyn. Syst., 8:4 (1988), 531–553 | DOI | MR | Zbl
[9] Downarowicz T., Newhouse S., “Symbolic extensions and smooth dynamical systems”, Invent. math., 160:3 (2005), 453–499 | DOI | MR | Zbl
[10] Duarte P., “Plenty of elliptic islands for the standard family of area preserving maps”, Ann. Inst. H. Poincaré. Anal. Non Lin., 11:4 (1994), 359–409 | MR | Zbl
[11] Duarte P., “Abundance of elliptic isles at conservative bifurcations”, Dyn. and Stab. Syst., 14:4 (1999), 339–356 | DOI | MR | Zbl
[12] Duarte P., “Persistent homoclinic tangencies for conservative maps near the identity”, Ergodic Theory and Dyn. Syst., 20:2 (2000), 393–438 | DOI | MR | Zbl
[13] Duarte P., “Elliptic isles in families of area-preserving maps”, Ergodic Theory and Dyn. Syst., 28:6 (2008), 1781–1813 | DOI | MR | Zbl
[14] Fontich E., “On integrability of quadratic area preserving mappings in the plane”, Dynamical systems and chaos, Lect. Notes Phys., 179, Springer, Berlin, 1983, 270–271 | DOI
[15] Fontich E., Simó C., “The splitting of separatrices for analytic diffeomorphisms”, Ergodic Theory and Dyn. Syst., 10:2 (1990), 295–318 | MR | Zbl
[16] Fontich E., Simó C., “Invariant manifolds for near identity differentiable maps and splitting of separatrices”, Ergodic Theory and Dyn. Syst., 10:2 (1990), 319–346 | MR | Zbl
[17] Garcia A., Perez-Chavela E., “Heteroclinic phenomena in the Sitnikov problem”, Hamiltonian systems and celestial mechanics (Patzcuaro, Mexico, 1998), World Sci. Monogr. Ser. Math., 6, World Sci., River Edge, NJ, 2000, 174–185 | DOI | MR | Zbl
[18] Gelfreich V. G., “Conjugation to a shift and the splitting of invariant manifolds”, Appl. math., 24:2 (1996), 127–140 | MR | Zbl
[19] Gelfreich V. G., “A proof of the exponentially small transversality of the separatrices for the standard map”, Commun. Math. Phys., 201:1 (1999), 155–216 | DOI | MR | Zbl
[20] Gelfreich V., “Splitting of a small separatrix loop near the saddle–center bifurcation in area-preserving maps”, Physica D, 136:3–4 (2000), 266–279 | DOI | MR | Zbl
[21] Gelfreikh V. G., Lazutkin V. F., “Rasscheplenie separatris: teoriya vozmuschenii, eksponentsialnaya malost”, UMN, 56:3 (2001), 79–142 | DOI | MR | Zbl
[22] Gelfreich V., Sauzin D., “Borel summation and splitting of separatrices for the Hénon map”, Ann. Inst. Fourier, 51:2 (2001), 513–567 | DOI | MR | Zbl
[23] Gonchenko S. V., Shilnikov L. P., “On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points”, Zap. nauch. sem. POMI, 300, 2003, 155–166 | MR | Zbl
[24] Gonchenko S., Turaev D., Shilnikov L., “Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps”, Nonlinearity, 20:2 (2007), 241–275 | DOI | MR | Zbl
[25] Hénon M., “Numerical study of quadratic area preserving mappings”, Quart. Appl. Math., 27:3 (1969), 291–312 | MR | Zbl
[26] Izraelev F. M., “Nearly linear mappings and their applications”, Physica D, 1:3 (1980), 243–266 | DOI | MR | Zbl
[27] Kaloshin V. Yu., “Generic diffeomorphisms with superexponential growth of number of periodic orbits”, Commun. Math. Phys., 211:1 (2000), 253–271 | DOI | MR | Zbl
[28] Katok A., “Bernoulli diffeomorphisms on surfaces”, Ann. Math. Ser. 2, 110:3 (1979), 529–547 | DOI | MR | Zbl
[29] Liverani C., “Birth of an elliptic island in a chaotic sea”, Math. Phys. Electron. J., 10 (2004), Pap. 1, 13 pp. | MR
[30] Llibre J., Simó C., “Oscillatory solutions in the planar restricted three-body problem”, Math. Ann., 248 (1980), 153–184 | DOI | MR | Zbl
[31] Llibre J., Simó C., “Some homoclinic phenomena in the three body problem”, J. Diff Equat., 37 (1980), 444–465 | DOI | MR | Zbl
[32] McCluskey H., Manning A., “Hausdorff dimension for horseshoes”, Ergodic Theory and Dyn. Syst., 3:2 (1983), 251–260 | DOI | MR | Zbl
[33] McGehee R., “A stable manifold theorem for degenerate fixed points with applications to celestial mechanics”, J. Diff. Equat., 14 (1973), 70–88 | DOI | MR | Zbl
[34] Mora L., Romero N., “Moser's invariant curves and homoclinic bifurcations”, Dyn. Syst. and Appl., 6 (1997), 29–42 | MR
[35] Mora L., Viana M., “Abundance of strange attractors”, Acta math., 171:1 (1993), 1–71 | DOI | MR | Zbl
[36] de A. Moreira C. G. T., “Stable intersections of Cantor sets and homoclinic bifurcations”, Ann. Inst. H. Poincaré. Anal. Non Lin., 13:6 (1996), 741–781 | MR | Zbl
[37] Moser J., Stable and random motions in dynamical systems, Princeton Univ. Press, Princeton, 1973 | MR | Zbl
[38] Newhouse S. E., “Nondensity of Axiom A(a) on $S^2$”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 191–202 | DOI | MR
[39] Newhouse S. E., “Diffeomorphisms with infinitely many sinks”, Topology, 13 (1974), 9–18 | DOI | MR | Zbl
[40] Newhouse S. E., “Quasi-elliptic periodic points in conservative dynamical systems”, Amer. J. Math., 99:5 (1977), 1061–1087 | DOI | MR | Zbl
[41] Newhouse S. E., “Topological entropy and Hausdorff dimension for area preserving diffeomorphisms of surfaces”, Dynamical systems, V. 3 (Warsaw, June 27 – July 2, 1977), Astérisque, 51, Soc. math. France, Paris, 1978, 323–334 | MR
[42] Newhouse S. E., “The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms”, Publ. Math. IHES, 50 (1979), 101–151 | DOI | MR
[43] Newhouse S. E., “Lectures on dynamical systems”, Dynamical systems, Centro Intern. Mat. Estivo Lect. (Bressanone, Italy, 1978), Progr. Math., 8, Birkhäuser, Boston, 1980, 1–114 | MR
[44] Newhouse S., Palis J., “Cycles and bifurcation theory”, Trois études en dynamique qualitative, Astérisque, 31, Soc. math. France, Paris, 1976, 44–140 | MR
[45] Palis J., Takens F., “Hyperbolicity and the creation of homoclinic orbits”, Ann. Math. Ser. 2, 125:2 (1987), 337–374 | DOI | MR | Zbl
[46] Palis J., Takens F., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[47] Palis J., Viana M., “On the continuity of Hausdorff dimension and limit capacity for horseshoes”, Dynamical systems, Proc. Symp. (Valparaiso, Chile, 1986), Lect. Notes Math., 1331, Springer, Berlin, 1988, 150–160 | DOI | MR
[48] Palis J., Yoccoz J.-C., Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles, E-print , 2006 arxiv: math/0604174v1 | MR
[49] Pesin Ya. B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–112 | MR | Zbl
[50] Przytycki F., “Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behavior”, Ergodic Theory and Dyn. Syst., 2:3–4 (1982), 439–463 | MR | Zbl
[51] Robinson C., “Bifurcation to infinitely many sinks”, Commun. Math. Phys., 90:3 (1983), 433–459 | DOI | MR | Zbl
[52] Saari D. G., Xia Z., “The existence of oscillatory and superhyperbolic motion in Newtonian systems”, J. Diff. Equat., 82:2 (1989), 342–355 | DOI | MR | Zbl
[53] Siegel C. L., Moser J. K., Lectures on celestial mechanics, Springer, Berlin–Heidelberg–New York, 1971 | MR | Zbl
[54] Sinai Ya., Topics in ergodic theory, Princeton Math. Ser., 44, Princeton Univ. Press, Princeton, NJ, 1994 | MR | Zbl
[55] Sitnikov K. A., “Suschestvovanie ostsilliruyuschikh dvizhenii v zadache trekh tel”, DAN SSSR, 133:2 (1960), 303–306 | MR | Zbl
[56] Shepelyansky D. L., Stone A. D., “Chaotic Landau level mixing in classical and quantum wells”, Phys. Rev. Lett., 74 (1995), 2098–2101 | DOI
[57] Sternberg S., “The structure of local homeomorphisms. III”, Amer. J. Math., 81 (1959), 578–604 | DOI | MR | Zbl
[58] Wojtkowski M., “A model problem with the coexistence of stochastic and integrable behavior”, Commun. Math. Phys., 80 (1981), 453–464 | DOI | MR | Zbl
[59] Xia Z., “Melnikov method and transversal homoclinic points in the restricted three-body problem”, J. Diff. Equat., 96:1 (1992), 170–184 | DOI | MR | Zbl