Conservative Homoclinic Bifurcations and Some Applications
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 82-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study generic unfoldings of homoclinic tangencies of two-dimensional area-preserving diffeomorphisms (conservative Newhouse phenomena) and show that they give rise to invariant hyperbolic sets of arbitrarily large Hausdorff dimension. As applications, we discuss the size of the stochastic layer of a standard map and the Hausdorff dimension of invariant hyperbolic sets for certain restricted three-body problems. We avoid involved technical details and only concentrate on the ideas of the proof of the presented results.
@article{TRSPY_2009_267_a5,
     author = {A. Gorodetski and V. Kaloshin},
     title = {Conservative {Homoclinic} {Bifurcations} and {Some} {Applications}},
     journal = {Informatics and Automation},
     pages = {82--96},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2009_267_a5/}
}
TY  - JOUR
AU  - A. Gorodetski
AU  - V. Kaloshin
TI  - Conservative Homoclinic Bifurcations and Some Applications
JO  - Informatics and Automation
PY  - 2009
SP  - 82
EP  - 96
VL  - 267
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/TRSPY_2009_267_a5/
LA  - en
ID  - TRSPY_2009_267_a5
ER  - 
%0 Journal Article
%A A. Gorodetski
%A V. Kaloshin
%T Conservative Homoclinic Bifurcations and Some Applications
%J Informatics and Automation
%D 2009
%P 82-96
%V 267
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/TRSPY_2009_267_a5/
%G en
%F TRSPY_2009_267_a5
A. Gorodetski; V. Kaloshin. Conservative Homoclinic Bifurcations and Some Applications. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 82-96. https://geodesic-test.mathdoc.fr/item/TRSPY_2009_267_a5/

[1] Alexeyev V. M., “Sur l'allure finale du mouvement dans le problème des trois corps”, Actes Congr. Intern. Math., V. 2 (Nice, 1970), Gauthier-Villars, Paris, 1971, 893–907 | MR

[2] Arnaud M.-C., Bonatti C., Crovisier S., “Dynamiques symplectiques génériques”, Ergodic Theory and Dyn. Syst., 25:5 (2005), 1401–1436 | DOI | MR | Zbl

[3] Bonatti C., Crovisier S., “Récurrence et généricité”, Invent. math., 158:1 (2004), 33–104 | DOI | MR | Zbl

[4] Bunimovich L. A., “Mushrooms and other billiards with divided phase space”, Chaos, 11 (2001), 802–808 | DOI | MR | Zbl

[5] Chernov V. L., “On separatrix splitting of some quadratic area-preserving maps of the plane”, Regul. and Chaotic Dyn., 3:1 (1998), 49–65 | DOI | MR | Zbl

[6] Chirikov B. V., “A universal instability of many-dimensional oscillator systems”, Phys. Rep., 52 (1979), 263–379 | DOI | MR

[7] Dankowicz H., Holmes P., “The existence of transverse homoclinic points in the Sitnikov problem”, J. Diff. Equat., 116:2 (1995), 468–483 | DOI | MR | Zbl

[8] Donnay V. J., “Geodesic flow on the two-sphere. I: Positive measure entropy”, Ergodic Theory and Dyn. Syst., 8:4 (1988), 531–553 | DOI | MR | Zbl

[9] Downarowicz T., Newhouse S., “Symbolic extensions and smooth dynamical systems”, Invent. math., 160:3 (2005), 453–499 | DOI | MR | Zbl

[10] Duarte P., “Plenty of elliptic islands for the standard family of area preserving maps”, Ann. Inst. H. Poincaré. Anal. Non Lin., 11:4 (1994), 359–409 | MR | Zbl

[11] Duarte P., “Abundance of elliptic isles at conservative bifurcations”, Dyn. and Stab. Syst., 14:4 (1999), 339–356 | DOI | MR | Zbl

[12] Duarte P., “Persistent homoclinic tangencies for conservative maps near the identity”, Ergodic Theory and Dyn. Syst., 20:2 (2000), 393–438 | DOI | MR | Zbl

[13] Duarte P., “Elliptic isles in families of area-preserving maps”, Ergodic Theory and Dyn. Syst., 28:6 (2008), 1781–1813 | DOI | MR | Zbl

[14] Fontich E., “On integrability of quadratic area preserving mappings in the plane”, Dynamical systems and chaos, Lect. Notes Phys., 179, Springer, Berlin, 1983, 270–271 | DOI

[15] Fontich E., Simó C., “The splitting of separatrices for analytic diffeomorphisms”, Ergodic Theory and Dyn. Syst., 10:2 (1990), 295–318 | MR | Zbl

[16] Fontich E., Simó C., “Invariant manifolds for near identity differentiable maps and splitting of separatrices”, Ergodic Theory and Dyn. Syst., 10:2 (1990), 319–346 | MR | Zbl

[17] Garcia A., Perez-Chavela E., “Heteroclinic phenomena in the Sitnikov problem”, Hamiltonian systems and celestial mechanics (Patzcuaro, Mexico, 1998), World Sci. Monogr. Ser. Math., 6, World Sci., River Edge, NJ, 2000, 174–185 | DOI | MR | Zbl

[18] Gelfreich V. G., “Conjugation to a shift and the splitting of invariant manifolds”, Appl. math., 24:2 (1996), 127–140 | MR | Zbl

[19] Gelfreich V. G., “A proof of the exponentially small transversality of the separatrices for the standard map”, Commun. Math. Phys., 201:1 (1999), 155–216 | DOI | MR | Zbl

[20] Gelfreich V., “Splitting of a small separatrix loop near the saddle–center bifurcation in area-preserving maps”, Physica D, 136:3–4 (2000), 266–279 | DOI | MR | Zbl

[21] Gelfreikh V. G., Lazutkin V. F., “Rasscheplenie separatris: teoriya vozmuschenii, eksponentsialnaya malost”, UMN, 56:3 (2001), 79–142 | DOI | MR | Zbl

[22] Gelfreich V., Sauzin D., “Borel summation and splitting of separatrices for the Hénon map”, Ann. Inst. Fourier, 51:2 (2001), 513–567 | DOI | MR | Zbl

[23] Gonchenko S. V., Shilnikov L. P., “On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points”, Zap. nauch. sem. POMI, 300, 2003, 155–166 | MR | Zbl

[24] Gonchenko S., Turaev D., Shilnikov L., “Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps”, Nonlinearity, 20:2 (2007), 241–275 | DOI | MR | Zbl

[25] Hénon M., “Numerical study of quadratic area preserving mappings”, Quart. Appl. Math., 27:3 (1969), 291–312 | MR | Zbl

[26] Izraelev F. M., “Nearly linear mappings and their applications”, Physica D, 1:3 (1980), 243–266 | DOI | MR | Zbl

[27] Kaloshin V. Yu., “Generic diffeomorphisms with superexponential growth of number of periodic orbits”, Commun. Math. Phys., 211:1 (2000), 253–271 | DOI | MR | Zbl

[28] Katok A., “Bernoulli diffeomorphisms on surfaces”, Ann. Math. Ser. 2, 110:3 (1979), 529–547 | DOI | MR | Zbl

[29] Liverani C., “Birth of an elliptic island in a chaotic sea”, Math. Phys. Electron. J., 10 (2004), Pap. 1, 13 pp. | MR

[30] Llibre J., Simó C., “Oscillatory solutions in the planar restricted three-body problem”, Math. Ann., 248 (1980), 153–184 | DOI | MR | Zbl

[31] Llibre J., Simó C., “Some homoclinic phenomena in the three body problem”, J. Diff Equat., 37 (1980), 444–465 | DOI | MR | Zbl

[32] McCluskey H., Manning A., “Hausdorff dimension for horseshoes”, Ergodic Theory and Dyn. Syst., 3:2 (1983), 251–260 | DOI | MR | Zbl

[33] McGehee R., “A stable manifold theorem for degenerate fixed points with applications to celestial mechanics”, J. Diff. Equat., 14 (1973), 70–88 | DOI | MR | Zbl

[34] Mora L., Romero N., “Moser's invariant curves and homoclinic bifurcations”, Dyn. Syst. and Appl., 6 (1997), 29–42 | MR

[35] Mora L., Viana M., “Abundance of strange attractors”, Acta math., 171:1 (1993), 1–71 | DOI | MR | Zbl

[36] de A. Moreira C. G. T., “Stable intersections of Cantor sets and homoclinic bifurcations”, Ann. Inst. H. Poincaré. Anal. Non Lin., 13:6 (1996), 741–781 | MR | Zbl

[37] Moser J., Stable and random motions in dynamical systems, Princeton Univ. Press, Princeton, 1973 | MR | Zbl

[38] Newhouse S. E., “Nondensity of Axiom A(a) on $S^2$”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 191–202 | DOI | MR

[39] Newhouse S. E., “Diffeomorphisms with infinitely many sinks”, Topology, 13 (1974), 9–18 | DOI | MR | Zbl

[40] Newhouse S. E., “Quasi-elliptic periodic points in conservative dynamical systems”, Amer. J. Math., 99:5 (1977), 1061–1087 | DOI | MR | Zbl

[41] Newhouse S. E., “Topological entropy and Hausdorff dimension for area preserving diffeomorphisms of surfaces”, Dynamical systems, V. 3 (Warsaw, June 27 – July 2, 1977), Astérisque, 51, Soc. math. France, Paris, 1978, 323–334 | MR

[42] Newhouse S. E., “The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms”, Publ. Math. IHES, 50 (1979), 101–151 | DOI | MR

[43] Newhouse S. E., “Lectures on dynamical systems”, Dynamical systems, Centro Intern. Mat. Estivo Lect. (Bressanone, Italy, 1978), Progr. Math., 8, Birkhäuser, Boston, 1980, 1–114 | MR

[44] Newhouse S., Palis J., “Cycles and bifurcation theory”, Trois études en dynamique qualitative, Astérisque, 31, Soc. math. France, Paris, 1976, 44–140 | MR

[45] Palis J., Takens F., “Hyperbolicity and the creation of homoclinic orbits”, Ann. Math. Ser. 2, 125:2 (1987), 337–374 | DOI | MR | Zbl

[46] Palis J., Takens F., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[47] Palis J., Viana M., “On the continuity of Hausdorff dimension and limit capacity for horseshoes”, Dynamical systems, Proc. Symp. (Valparaiso, Chile, 1986), Lect. Notes Math., 1331, Springer, Berlin, 1988, 150–160 | DOI | MR

[48] Palis J., Yoccoz J.-C., Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles, E-print , 2006 arxiv: math/0604174v1 | MR

[49] Pesin Ya. B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–112 | MR | Zbl

[50] Przytycki F., “Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behavior”, Ergodic Theory and Dyn. Syst., 2:3–4 (1982), 439–463 | MR | Zbl

[51] Robinson C., “Bifurcation to infinitely many sinks”, Commun. Math. Phys., 90:3 (1983), 433–459 | DOI | MR | Zbl

[52] Saari D. G., Xia Z., “The existence of oscillatory and superhyperbolic motion in Newtonian systems”, J. Diff. Equat., 82:2 (1989), 342–355 | DOI | MR | Zbl

[53] Siegel C. L., Moser J. K., Lectures on celestial mechanics, Springer, Berlin–Heidelberg–New York, 1971 | MR | Zbl

[54] Sinai Ya., Topics in ergodic theory, Princeton Math. Ser., 44, Princeton Univ. Press, Princeton, NJ, 1994 | MR | Zbl

[55] Sitnikov K. A., “Suschestvovanie ostsilliruyuschikh dvizhenii v zadache trekh tel”, DAN SSSR, 133:2 (1960), 303–306 | MR | Zbl

[56] Shepelyansky D. L., Stone A. D., “Chaotic Landau level mixing in classical and quantum wells”, Phys. Rev. Lett., 74 (1995), 2098–2101 | DOI

[57] Sternberg S., “The structure of local homeomorphisms. III”, Amer. J. Math., 81 (1959), 578–604 | DOI | MR | Zbl

[58] Wojtkowski M., “A model problem with the coexistence of stochastic and integrable behavior”, Commun. Math. Phys., 80 (1981), 453–464 | DOI | MR | Zbl

[59] Xia Z., “Melnikov method and transversal homoclinic points in the restricted three-body problem”, J. Diff. Equat., 96:1 (1992), 170–184 | DOI | MR | Zbl