On Prime Quaternions, Hurwitz Relations, and a~New Operation of Group Extension
Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 7-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Hurwitz relations that occur in the multiplicative group of Hamilton quaternions with rational coefficients. These relations arise for pairs of primary prime quaternions with prime norms p and q. There are two permutation groups associated to the Hurwitz relations. We prove that these permutation groups are isomorphic to the groups PSL(2,q), PGL(2,q), PSL(2,p), or PGL(2,p). We also introduce a new extension operation for groups based on Hurwitz-type relations. The extension of a given finitely presented group G uses a system of the so-called semistable letters, which are a generalization of the notion of stable letters introduced earlier by P. S. Novikov. The extensio H of a given group G is obtained by adding new generators and relations that satisfy the so-called normality condition. The extended group has a decidable word problem and a decidable conjugacy problem if the same problems are decidable for the given basic group.
@article{TRSPY_2003_242_a1,
     author = {S. I. Adian and F. Grunevald and J. Mennicke},
     title = {On {Prime} {Quaternions,} {Hurwitz} {Relations,} and {a~New} {Operation} of {Group} {Extension}},
     journal = {Informatics and Automation},
     pages = {7--22},
     publisher = {mathdoc},
     volume = {242},
     year = {2003},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2003_242_a1/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - F. Grunevald
AU  - J. Mennicke
TI  - On Prime Quaternions, Hurwitz Relations, and a~New Operation of Group Extension
JO  - Informatics and Automation
PY  - 2003
SP  - 7
EP  - 22
VL  - 242
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/TRSPY_2003_242_a1/
LA  - ru
ID  - TRSPY_2003_242_a1
ER  - 
%0 Journal Article
%A S. I. Adian
%A F. Grunevald
%A J. Mennicke
%T On Prime Quaternions, Hurwitz Relations, and a~New Operation of Group Extension
%J Informatics and Automation
%D 2003
%P 7-22
%V 242
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/TRSPY_2003_242_a1/
%G ru
%F TRSPY_2003_242_a1
S. I. Adian; F. Grunevald; J. Mennicke. On Prime Quaternions, Hurwitz Relations, and a~New Operation of Group Extension. Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 7-22. https://geodesic-test.mathdoc.fr/item/TRSPY_2003_242_a1/

[1] Hurwitz A., “Ueber die Zahlentheorie der Quaternionen”, Nachr. Ges. Wiss. Göttingen. Math.-phys. Kl., 1896, 313–340; Mathematische Werke, Bd. 2, Birkhäuser, Basel, Stuttgart, 1963, 303–330

[2] Adian S. I., Grunewald F., Lysionok I. G., Mennicke J., “On embeddings of $SL(2,\mathbb{Z})$ into quaternion groups”, Math. Ztschr., 238 (2001), 389–399 | DOI | MR | Zbl

[3] Grunewald F., Segal D., “Decision problems concerning $S$-arithmetic groups”, J. Symb. Logic, 50:3 (1985), 743–772 | DOI | MR | Zbl

[4] Novikov P. S., Ob algoritmicheskoi nerazreshimosti problemy tozhdestva teorii grupp, Tr. MIAN, 44, AN SSSR, M., 1955 | MR | Zbl

[5] Adyan S. I., Durnev V. G., “Algoritmicheskie problemy dlya grupp i polugrupp”, UMN, 55:2 (2000), 3–94 | MR | Zbl

[6] Dickson L. E., Modern elementary theory of numbers, Univ. Chicago Press, Chicago, 1939

[7] Huppert B., Endliche Gruppen, I, Springer, Berlin, 1967 | MR | Zbl

[8] Reiner I., Maximal orders, London Math. Soc. Monogr., 5, Acad. Press, London, 1975 | MR | Zbl