Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2001_235_a6, author = {S. M. Ivashkovich and V. V. Shevchishin}, title = {Holomorphic {Structure} on the {Space} of {Riemann} {Surfaces} with {Marked} {Boundary}}, journal = {Informatics and Automation}, pages = {98--109}, publisher = {mathdoc}, volume = {235}, year = {2001}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2001_235_a6/} }
TY - JOUR AU - S. M. Ivashkovich AU - V. V. Shevchishin TI - Holomorphic Structure on the Space of Riemann Surfaces with Marked Boundary JO - Informatics and Automation PY - 2001 SP - 98 EP - 109 VL - 235 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/TRSPY_2001_235_a6/ LA - en ID - TRSPY_2001_235_a6 ER -
S. M. Ivashkovich; V. V. Shevchishin. Holomorphic Structure on the Space of Riemann Surfaces with Marked Boundary. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 98-109. https://geodesic-test.mathdoc.fr/item/TRSPY_2001_235_a6/
[1] Abikoff W., The real analytic theory of Teichmüller space, Springer-Verl., Berlin etc., 1980 | MR | Zbl
[2] Dethloff G., Grauert H., “Deformation of compact Riemann surfaces $Y$ of genus $p$ with distinguished points $P_1,\ldots,P_m\in Y$”, Complex geometry and analysis, Intern. Symp. Pisa (Italy, 1988), Lect. Notes Math., 1422, Springer-Verl., Berlin, 1990, 37–44 | MR
[3] Deligne P., Mumford D., “The irreducibility of the space of curves of a given genus”, Publ. Math. IHES, 1969, no. 36, 75–109 | MR | Zbl
[4] Ivashkovich S., Shevchishin V., “Gromov compactness theorem for $J$-complex curves with boundary”, Intern. Math. Res. Not., 22 (2000), 1167–1206 | DOI | MR | Zbl