Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2000_228_a16, author = {R. F. Streater}, title = {The {Information} {Manifold} for {Relatively} {Bounded} {Potentials}}, journal = {Informatics and Automation}, pages = {217--235}, publisher = {mathdoc}, volume = {228}, year = {2000}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/TRSPY_2000_228_a16/} }
R. F. Streater. The Information Manifold for Relatively Bounded Potentials. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 217-235. https://geodesic-test.mathdoc.fr/item/TRSPY_2000_228_a16/
[1] Amari S., Differential-geometrical methods in statistics, Lect. Notes Stat., 28, Springer-Verl., Berlin, 1985 | MR | Zbl
[2] Amari S., Geometry and nature, Contemp. Math., 203, eds. J.-P. Bourguignon, H. Nencka, Amer. Math. Soc., Providence, R.I., 1997 | MR | Zbl
[3] Araki H., “Relative Hamiltonians for faithful normal states of a von Neumann algebra”, Publ. Res. Inst. Math. Sci., 9 (1973), 165–209 | DOI | MR | Zbl
[4] Araki H., “Multiple time analyticity of a quantum statistical state satisfying the ${\rm KMS}$ boundary condition”, Publ. Res. Inst. Math. Sci., ser. A, 4 (1968–1969), 361–371 | DOI | MR | Zbl
[5] Balian R., Alhassid Y., Reinhardt H., “Dissipation in many-body systems: a geometric approach based on information theory”, Phys. Rep., 131 (1986), 1–146 | DOI | MR
[6] Bendat J., Sherman S., “Monotone and convex operator functions”, Trans. Amer. Math. Soc., 79 (1955), 58–71 | DOI | MR | Zbl
[7] Bogoliubov N. N., “Quasimittelwerte in Problemen der Statistischen Mechanik, II”, Physik. Abhanadl. Sowjetunion, 6:3 (1962), 229–284
[8] Braunstein S. L., Caves C. M., “Statistical distance and the geometry of quantum states”, Phys. Rev. Lett., 72 (1994), 3439–3443 | DOI | MR | Zbl
[9] Čhençov N. N., Statistical decision rules and optimal inferences, Transl. Math. Monogr., 53, Amer. Math. Soc., Providence, R.I., 1982 | MR | MR | Zbl | Zbl
[10] Davies E. B., Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, 42, Cambridge University Press, Cambridge, 1995 | MR
[11] Dawid A. P., “Comments on the paper: B. Efron, Defining the curvature of a statistical problem (with applications to second order efficiency)”, Ann. Statist., 3 (1975), 1231–1234 | MR
[12] Dawid A. P., “Further comments on some comments on a paper by Bradley Efron”, Ann. Statist., 5 (1977), 1249 | DOI | MR | Zbl
[13] Fisher R. A., “Theory of statistical estimation”, Proc. Cambridge Phil. Soc., 22 (1925), 700–725 | DOI | Zbl
[14] Gibilisco P., Pistone G., Connections on nonparametric statistical manifolds by Orlicz space geometry, Preprint. Politec. Turin, 1995 | Zbl
[15] Hasagawa H., “$\alpha $-Divergence of the non-commutative information geometry”, Repts Math. Phys., 33 (1993), 87–93 | DOI
[16] Hasagawa H., “Noncommutative extension of information geometry”, Quantum communication and measurement, eds. V. P. Belavkin, O. Hirota, R. L. Hudson, Plenum Press, N. Y., 1995, 327–337
[17] Hasagawa H., “Exponential and mixture families in quantum statistics: dual structure and unbiased parameter estimation”, Repts Math. Phys., 39 (1997), 49–68 | DOI | MR
[18] Hasagawa H., Petz D., “Non-commutative extension of information geometry”, Quantum communication, computing and measurement, eds. O. Hirota et al., Plenum Press, N. Y., 1997, 109–118
[19] Ingarden R. S., “Information theory and variational principles in statistical physics”, Bull. Acad. polon. sci., ser. Math. Astronom. Phys., 11 (1963), 541–547 | MR | Zbl
[20] Ingarden R. S., “Information thermodynamics and differential geometry”, Mem. Sagami Inst. Techn., 12 (1978), 83–89
[21] Ingarden R. S., Janyszek H., “On the local Riemannian structure of the state space of classical information thermodynamics”, Tensor, 39 (1982), 279–285 | MR | Zbl
[22] Ingarden R. S., “Towards mesoscopic thermodynamics”, Open Syst. and Inform. Dyn., 1 (1992), 75–102 | DOI | Zbl
[23] Ingarden R. S., “Information geometry in functional spaces; classical and quantum finite statistical systems”, Intern. J. Eng. Sci., 19 (1981), 1609–1633 | DOI | MR | Zbl
[24] Ingarden R. S., Sato Y., Sagura K., Kawaguchi T., Tensor, 33 (1979), 347 | MR | Zbl
[25] Ingarden R. S., Janyszek H., Kossakowski A., Kawaguchi T., Tensor, 37 (1982) | MR | Zbl
[26] Ingarden R. S., Nakagomi T., “The second order extension of the Gibbs state”, Open Syst. and Inform. Dyn., 1 (1992), 243–258 | DOI | Zbl
[27] Jaynes E. T., “Information theory and statistical mechanics, I”, Phys. Rev., 106 (1957), 620–630 | DOI | MR | Zbl
[28] Kato T., Perturbation theory for linear operators, Springer-Verl., Berlin, 1966 | MR
[29] Kossakowski A., “On the quantum informational thermodynamics”, Bull. acad. polon. sci., 17 (1969), 263–267 | MR
[30] Kubo R., J. Phys. Soc. Japan, 12 (1957), 570–586 | DOI | MR
[31] Kubo R., Repts Progr. Phys., 29 (1966), 255 | DOI | Zbl
[32] Lindblad G., “Entropy, information and quantum measurements”, Commun. Math. Phys., 33 (1973), 305–322 | DOI | MR
[33] Matsubara T., “A new approach to quantum-statistical mechanics”, Progr. Theor. Phys., 14 (1955), 351–378 | DOI | MR | Zbl
[34] Mori H., “Transport, collective motion, and Brownian motion”, Progr. Theor. Phys., 33 (1965), 423–455 | DOI | Zbl
[35] Nagaoka H., “Differential geometrical aspects of quantum state estimation and relative entropy”, Quantum communication and measurement, eds. V. P. Belavkin, O. Hirota, R. L. Hudson, Plenum Press, N. Y., 1995 | MR | Zbl
[36] Ohya M., Petz D., Quantum entropy and its use, Springer, Heidelberg, 1993 | MR | Zbl
[37] Petz D., “Geometry of canonical correlation on the state space of a quantum system”, J. Math. Phys., 35 (1994), 780–795 | DOI | MR | Zbl
[38] Petz D., “Monotone metrics on matrix spaces”, Lin. Alg. and its Appl., 244 (1996), 81–96 | DOI | MR | Zbl
[39] Petz D., Toth G., Lett. Math. Phys., 27 (1993), 205–216 | DOI | MR | Zbl
[40] Petz D., Hasagawa H., “On the Riemannian metric of $\alpha $-entropies of density matrices”, Lett. Math. Phys., 38 (1996), 221–225 | DOI | MR | Zbl
[41] Pistone G., Sempi C., “An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one”, Ann. Statist., 23 (1995), 1543–1561 | DOI | MR | Zbl
[42] Rao C. R., Bull. Calcutta Math. Soc., 37 (1945), 81–89 | MR
[43] Reed M., Simon B., Methods of modern mathematical physics, v. 2, Acad. Press, N. Y., 1975 | Zbl
[44] Roepstorff G., “Correlation inequalities in quantum statistical mechanics and their application in the Kondo problem”, Commun. Math. Phys., 46 (1976), 253–262 | DOI | MR
[45] Roepstorff G., Path-integral approach to quantum physics, Springer, Berlin, 1994 | MR | Zbl
[46] Streater R. F., “Information geometry and reduced quantum description”, Repts Math. Phys., 38 (1996), 419–436 | DOI | MR | Zbl
[47] Streater R. F., Statistical dynamics, Imperial College Press, London, 1995 | MR | Zbl
[48] Streater R. F., “Statistical dynamics and information geometry”, Geometry and nature, Contemp. Math., 203, eds. J.-P. Bourguignon, H. Nencka, Amer. Math. Soc., Providence, R.I., 1997, 117–131 | MR | Zbl
[49] Uhlmann A., “The “transition probability” in the state space of a $^*$-algebra”, Repts Math. Phys., 9 (1976), 273–279 | DOI | MR | Zbl
[50] Uhlmann A., Repts Math. Phys., 33 (1993), 253–263 | DOI | MR | Zbl