Infinitesimal aspects of the Laplace operator
Theory and Applications of Categories [electronic only] , CT2000, Tome 9 (2000), pp. 1-16.

Voir la notice de l'article dans Theory and Applications of Categories website

In the context of synthetic differential geometry, we study the Laplace operator an a Riemannian manifold. The main new aspect is a neighbourhood of the diagonal, smaller than the second neighbourhood usually required as support for second order differential operators. The new neighbourhood has the property that a function is affine on it if and only if it is harmonic.
Classification : 18F99, 53B20.
Mots-clés : Laplacian, harmonic, conformal, synthetic dfferential geometry.
@article{TAC_2000__9_a0,
     author = {Anders Kock},
     title = {Infinitesimal aspects of the {Laplace} operator},
     journal = {Theory and Applications of Categories [electronic only]
},
     pages = {1--16},
     volume = {9},
     year = {2000},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/TAC_2000__9_a0/}
}
TY  - JOUR
AU  - Anders Kock
TI  - Infinitesimal aspects of the Laplace operator
JO  - Theory and Applications of Categories [electronic only]

PY  - 2000
SP  - 1
EP  - 16
VL  - 9
UR  - https://geodesic-test.mathdoc.fr/item/TAC_2000__9_a0/
LA  - en
ID  - TAC_2000__9_a0
ER  - 
%0 Journal Article
%A Anders Kock
%T Infinitesimal aspects of the Laplace operator
%J Theory and Applications of Categories [electronic only]

%D 2000
%P 1-16
%V 9
%U https://geodesic-test.mathdoc.fr/item/TAC_2000__9_a0/
%G en
%F TAC_2000__9_a0
Anders Kock. Infinitesimal aspects of the Laplace operator. Theory and Applications of Categories [electronic only]
, CT2000, Tome 9 (2000), pp. 1-16. https://geodesic-test.mathdoc.fr/item/TAC_2000__9_a0/