The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces
Studia Mathematica, Tome 233 (2016) no. 2, p. 119.

Voir la notice de l'article dans European Digital Mathematics Library

Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space X is an Ascoli space if every compact subset of C k ( X ) is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every k ℝ -space, hence any k-space, is Ascoli. Let X be a metrizable space. We prove that the space C k ( X ) is Ascoli iff C k ( X ) is a k ℝ -space iff X is locally compact. Moreover, C k ( X ) endowed with the weak topology is Ascoli iff X is countable and discrete. Using some basic concepts from probability theory and measure-theoretic properties of ℓ₁, we show that the following assertions are equivalent for a Banach space E: (i) E does not contain an isomorphic copy of ℓ₁, (ii) every real-valued sequentially continuous map on the unit ball B w with the weak topology is continuous, (iii) B w is a k ℝ -space, (iv) B w is an Ascoli space. We also prove that a Fréchet lcs F does not contain an isomorphic copy of ℓ₁ iff each closed and convex bounded subset of F is Ascoli in the weak topology. Moreover we show that a Banach space E in the weak topology is Ascoli iff E is finite-dimensional. We supplement the last result by showing that a Fréchet lcs F which is a quojection is Ascoli in the weak topology iff F is either finite-dimensional or isomorphic to ℕ , where ∈ ℝ,ℂ.
Classification : 46B25, 54C35, 46A04, 28C15
Mots-clés : Banach space, Fréchet space, weak topology, ascoli property
@article{STUMA_2016__233_2_286369,
     author = {S. Gabriyelyan and J. K\k{a}kol and G. Plebanek},
     title = {The {Ascoli} property for function spaces and the weak topology of {Banach} and {Fr\'echet} spaces},
     journal = {Studia Mathematica},
     pages = {119},
     publisher = {mathdoc},
     volume = {233},
     number = {2},
     year = {2016},
     zbl = {06586871},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_286369/}
}
TY  - JOUR
AU  - S. Gabriyelyan
AU  - J. Kąkol
AU  - G. Plebanek
TI  - The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces
JO  - Studia Mathematica
PY  - 2016
SP  - 119
VL  - 233
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_286369/
LA  - en
ID  - STUMA_2016__233_2_286369
ER  - 
%0 Journal Article
%A S. Gabriyelyan
%A J. Kąkol
%A G. Plebanek
%T The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces
%J Studia Mathematica
%D 2016
%P 119
%V 233
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_286369/
%G en
%F STUMA_2016__233_2_286369
S. Gabriyelyan; J. Kąkol; G. Plebanek. The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces. Studia Mathematica, Tome 233 (2016) no. 2, p. 119. https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_286369/