Non-universal families of separable Banach spaces
Studia Mathematica, Tome 233 (2016) no. 2, p. 153.

Voir la notice de l'article dans European Digital Mathematics Library

We prove that if 𝓒 is a family of separable Banach spaces which is analytic with respect to the Effros Borel structure and no X ∈ 𝓒 is isometrically universal for all separable Banach spaces, then there exists a separable Banach space with a monotone Schauder basis which is isometrically universal for 𝓒 but not for all separable Banach spaces. We also establish an analogous result for the class of strictly convex spaces.
Classification : 46B04, 46B15, 46B20, 46B25, 54H05
Mots-clés : isometrically universal Banach space, Effros Borel structure, analytic set, monotone basis, strict convexity
@article{STUMA_2016__233_2_285913,
     author = {Ond\v{r}ej Kurka},
     title = {Non-universal families of separable {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {153},
     publisher = {mathdoc},
     volume = {233},
     number = {2},
     year = {2016},
     zbl = {06586873},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_285913/}
}
TY  - JOUR
AU  - Ondřej Kurka
TI  - Non-universal families of separable Banach spaces
JO  - Studia Mathematica
PY  - 2016
SP  - 153
VL  - 233
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_285913/
LA  - en
ID  - STUMA_2016__233_2_285913
ER  - 
%0 Journal Article
%A Ondřej Kurka
%T Non-universal families of separable Banach spaces
%J Studia Mathematica
%D 2016
%P 153
%V 233
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_285913/
%G en
%F STUMA_2016__233_2_285913
Ondřej Kurka. Non-universal families of separable Banach spaces. Studia Mathematica, Tome 233 (2016) no. 2, p. 153. https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_285913/