Topological algebras of random elements
Studia Mathematica, Tome 233 (2016) no. 2, p. 101.
Voir la notice de l'article dans European Digital Mathematics Library
Let L₀(Ω;A) be the Fréchet space of Bochner-measurable random variables with values in a unital complex Banach algebra A. We study L₀(Ω;A) as a topological algebra, investigating the notion of spectrum in L₀(Ω;A), the Jacobson radical, ideals, hulls and kernels. Several results on automatic continuity of homomorphisms are developed, including versions of well-known theorems of C. Rickart and B. E. Johnson.
Classification :
46H05, 46H10, 46H25, 46H40, 60B05, 60B11
Mots-clés : Banach algebra, topological algebra, F-algebra, spectrum, random element, radical, ideal, hull, kernel, homomorphism, automatic continuity
Mots-clés : Banach algebra, topological algebra, F-algebra, spectrum, random element, radical, ideal, hull, kernel, homomorphism, automatic continuity
@article{STUMA_2016__233_2_285540, author = {Bertram M. Schreiber and M. Victoria Velasco}, title = {Topological algebras of random elements}, journal = {Studia Mathematica}, pages = {101}, publisher = {mathdoc}, volume = {233}, number = {2}, year = {2016}, zbl = {06586870}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_285540/} }
Bertram M. Schreiber; M. Victoria Velasco. Topological algebras of random elements. Studia Mathematica, Tome 233 (2016) no. 2, p. 101. https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_2_285540/