Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups
Studia Mathematica, Tome 233 (2016) no. 1, p. 1.
Voir la notice de l'article dans European Digital Mathematics Library
This paper continues the joint work with A. R. Medghalchi (2012) and the author’s recent work (2015). For an inverse semigroup S, it is shown that
A
p
(
S
)
has a bounded approximate identity if and only if l¹(S) is amenable (a generalization of Leptin’s theorem) and that A(S), the Fourier algebra of S, is operator amenable if and only if l¹(S) is amenable (a generalization of Ruan’s theorem).
Classification :
43A15, 20M18
Mots-clés : Figa-Talamanca-Herz algebras, amenability, semigroup algebras
Mots-clés : Figa-Talamanca-Herz algebras, amenability, semigroup algebras
@article{STUMA_2016__233_1_286168, author = {Hasan Pourmahmood-Aghababa}, title = {Amenability properties of {Fig\`a-Talamanca-Herz} algebras on inverse semigroups}, journal = {Studia Mathematica}, pages = {1}, publisher = {mathdoc}, volume = {233}, number = {1}, year = {2016}, zbl = {06586864}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_286168/} }
TY - JOUR AU - Hasan Pourmahmood-Aghababa TI - Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups JO - Studia Mathematica PY - 2016 SP - 1 VL - 233 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_286168/ LA - en ID - STUMA_2016__233_1_286168 ER -
Hasan Pourmahmood-Aghababa. Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups. Studia Mathematica, Tome 233 (2016) no. 1, p. 1. https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_286168/