Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups
Studia Mathematica, Tome 233 (2016) no. 1, p. 1.

Voir la notice de l'article dans European Digital Mathematics Library

This paper continues the joint work with A. R. Medghalchi (2012) and the author’s recent work (2015). For an inverse semigroup S, it is shown that A p ( S ) has a bounded approximate identity if and only if l¹(S) is amenable (a generalization of Leptin’s theorem) and that A(S), the Fourier algebra of S, is operator amenable if and only if l¹(S) is amenable (a generalization of Ruan’s theorem).
Classification : 43A15, 20M18
Mots-clés : Figa-Talamanca-Herz algebras, amenability, semigroup algebras
@article{STUMA_2016__233_1_286168,
     author = {Hasan Pourmahmood-Aghababa},
     title = {Amenability properties of {Fig\`a-Talamanca-Herz} algebras on inverse semigroups},
     journal = {Studia Mathematica},
     pages = {1},
     publisher = {mathdoc},
     volume = {233},
     number = {1},
     year = {2016},
     zbl = {06586864},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_286168/}
}
TY  - JOUR
AU  - Hasan Pourmahmood-Aghababa
TI  - Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups
JO  - Studia Mathematica
PY  - 2016
SP  - 1
VL  - 233
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_286168/
LA  - en
ID  - STUMA_2016__233_1_286168
ER  - 
%0 Journal Article
%A Hasan Pourmahmood-Aghababa
%T Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups
%J Studia Mathematica
%D 2016
%P 1
%V 233
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_286168/
%G en
%F STUMA_2016__233_1_286168
Hasan Pourmahmood-Aghababa. Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups. Studia Mathematica, Tome 233 (2016) no. 1, p. 1. https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_286168/