Asymptotically conformal classes and non-Strebel points
Studia Mathematica, Tome 233 (2016) no. 1, p. 13.

Voir la notice de l'article dans European Digital Mathematics Library

Let T(Δ) be the universal Teichmüller space on the unit disk Δ and T₀(Δ) be the set of asymptotically conformal classes in T(Δ). Suppose that μ is a Beltrami differential on Δ with [μ] ∈ T₀(Δ). It is an interesting question whether [tμ] belongs to T₀(Δ) for general t ≠ 0, 1. In this paper, it is shown that there exists a Beltrami differential μ ∈ [0] such that [tμ] is a non-trivial non-Strebel point for any t ∈ ( - 1 / | | μ | | ∞ , 1 / | | μ | | ∞ ) ∖ 0 , 1 .
Classification : 30C62, 30C75
Mots-clés : teichm
@article{STUMA_2016__233_1_285811,
     author = {Guowu Yao},
     title = {Asymptotically conformal classes and {non-Strebel} points},
     journal = {Studia Mathematica},
     pages = {13},
     publisher = {mathdoc},
     volume = {233},
     number = {1},
     year = {2016},
     zbl = {06586865},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285811/}
}
TY  - JOUR
AU  - Guowu Yao
TI  - Asymptotically conformal classes and non-Strebel points
JO  - Studia Mathematica
PY  - 2016
SP  - 13
VL  - 233
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285811/
LA  - en
ID  - STUMA_2016__233_1_285811
ER  - 
%0 Journal Article
%A Guowu Yao
%T Asymptotically conformal classes and non-Strebel points
%J Studia Mathematica
%D 2016
%P 13
%V 233
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285811/
%G en
%F STUMA_2016__233_1_285811
Guowu Yao. Asymptotically conformal classes and non-Strebel points. Studia Mathematica, Tome 233 (2016) no. 1, p. 13. https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285811/