Asymptotically conformal classes and non-Strebel points
Studia Mathematica, Tome 233 (2016) no. 1, p. 13.
Voir la notice de l'article dans European Digital Mathematics Library
Let T(Δ) be the universal Teichmüller space on the unit disk Δ and T₀(Δ) be the set of asymptotically conformal classes in T(Δ). Suppose that μ is a Beltrami differential on Δ with [μ] ∈ T₀(Δ). It is an interesting question whether [tμ] belongs to T₀(Δ) for general t ≠ 0, 1. In this paper, it is shown that there exists a Beltrami differential μ ∈ [0] such that [tμ] is a non-trivial non-Strebel point for any
t
∈
(
-
1
/
|
|
μ
|
|
∞
,
1
/
|
|
μ
|
|
∞
)
∖
0
,
1
.
@article{STUMA_2016__233_1_285811, author = {Guowu Yao}, title = {Asymptotically conformal classes and {non-Strebel} points}, journal = {Studia Mathematica}, pages = {13}, publisher = {mathdoc}, volume = {233}, number = {1}, year = {2016}, zbl = {06586865}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285811/} }
Guowu Yao. Asymptotically conformal classes and non-Strebel points. Studia Mathematica, Tome 233 (2016) no. 1, p. 13. https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285811/