Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
Studia Mathematica, Tome 233 (2016) no. 1, p. 47.

Voir la notice de l'article dans European Digital Mathematics Library

We study the continuity and compactness of embeddings for radial Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A ∞ . The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation.
Classification : 46E35, 42C40
Mots-clés : embedding theorems, radial functions, Muckenhoupt weights, wavelet bases
@article{STUMA_2016__233_1_285423,
     author = {Pablo L. De N\'apoli and Irene Drelichman and Nicolas Saintier},
     title = {Weighted embedding theorems for radial {Besov} and {Triebel-Lizorkin} spaces},
     journal = {Studia Mathematica},
     pages = {47},
     publisher = {mathdoc},
     volume = {233},
     number = {1},
     year = {2016},
     zbl = {06586867},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285423/}
}
TY  - JOUR
AU  - Pablo L. De Nápoli
AU  - Irene Drelichman
AU  - Nicolas Saintier
TI  - Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
JO  - Studia Mathematica
PY  - 2016
SP  - 47
VL  - 233
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285423/
LA  - en
ID  - STUMA_2016__233_1_285423
ER  - 
%0 Journal Article
%A Pablo L. De Nápoli
%A Irene Drelichman
%A Nicolas Saintier
%T Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces
%J Studia Mathematica
%D 2016
%P 47
%V 233
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285423/
%G en
%F STUMA_2016__233_1_285423
Pablo L. De Nápoli; Irene Drelichman; Nicolas Saintier. Weighted embedding theorems for radial Besov and Triebel-Lizorkin spaces. Studia Mathematica, Tome 233 (2016) no. 1, p. 47. https://geodesic-test.mathdoc.fr/item/STUMA_2016__233_1_285423/