Dual spaces to Orlicz-Lorentz spaces
Studia Mathematica, Tome 222 (2014) no. 3, p. 229.

Voir la notice de l'article dans European Digital Mathematics Library

For an Orlicz function φ and a decreasing weight w, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz-Lorentz function space Λ φ , w or the sequence space λ φ , w , equipped with either the Luxemburg or Amemiya norms. The first description is via the modular i n f ∫ φ ⁎ ( f * / | g | ) | g | : g ≺ w , where f* is the decreasing rearrangement of f, ≺ denotes submajorization, and φ⁎ is the complementary function to φ. The second description is in terms of the modular ∫ I φ ⁎ ( ( f * ) ⁰ / w ) w ,where (f*)⁰ is Halperin’s level function of f* with respect to w. That these two descriptions are equivalent results from the identity i n f ∫ ψ ( f * / | g | ) | g | : g ≺ w = ∫ I ψ ( ( f * ) ⁰ / w ) w , valid for any measurable function f and any Orlicz function ψ. An analogous identity and dual representations are also presented for sequence spaces.
Classification : 46B10, 46E30, 42B25
Mots-clés : Orlicz-Lorentz spaces, Lorentz spaces, dual spaces, level function, Calderón-Lozanovskii spaces, r.i. spaces
@article{STUMA_2014__222_3_286639,
     author = {Anna Kami\'nska and Karol Le\'snik and Yves Raynaud},
     title = {Dual spaces to {Orlicz-Lorentz} spaces},
     journal = {Studia Mathematica},
     pages = {229},
     publisher = {mathdoc},
     volume = {222},
     number = {3},
     year = {2014},
     zbl = {1322.46021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_286639/}
}
TY  - JOUR
AU  - Anna Kamińska
AU  - Karol Leśnik
AU  - Yves Raynaud
TI  - Dual spaces to Orlicz-Lorentz spaces
JO  - Studia Mathematica
PY  - 2014
SP  - 229
VL  - 222
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_286639/
LA  - en
ID  - STUMA_2014__222_3_286639
ER  - 
%0 Journal Article
%A Anna Kamińska
%A Karol Leśnik
%A Yves Raynaud
%T Dual spaces to Orlicz-Lorentz spaces
%J Studia Mathematica
%D 2014
%P 229
%V 222
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_286639/
%G en
%F STUMA_2014__222_3_286639
Anna Kamińska; Karol Leśnik; Yves Raynaud. Dual spaces to Orlicz-Lorentz spaces. Studia Mathematica, Tome 222 (2014) no. 3, p. 229. https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_286639/