Dual spaces to Orlicz-Lorentz spaces
Studia Mathematica, Tome 222 (2014) no. 3, p. 229.
Voir la notice de l'article dans European Digital Mathematics Library
For an Orlicz function φ and a decreasing weight w, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz-Lorentz function space
Λ
φ
,
w
or the sequence space
λ
φ
,
w
, equipped with either the Luxemburg or Amemiya norms. The first description is via the modular
i
n
f
∫
φ
⁎
(
f
*
/
|
g
|
)
|
g
|
:
g
≺
w
, where f* is the decreasing rearrangement of f, ≺ denotes submajorization, and φ⁎ is the complementary function to φ. The second description is in terms of the modular
∫
I
φ
⁎
(
(
f
*
)
⁰
/
w
)
w
,where (f*)⁰ is Halperin’s level function of f* with respect to w. That these two descriptions are equivalent results from the identity
i
n
f
∫
ψ
(
f
*
/
|
g
|
)
|
g
|
:
g
≺
w
=
∫
I
ψ
(
(
f
*
)
⁰
/
w
)
w
, valid for any measurable function f and any Orlicz function ψ. An analogous identity and dual representations are also presented for sequence spaces.
Classification :
46B10, 46E30, 42B25
Mots-clés : Orlicz-Lorentz spaces, Lorentz spaces, dual spaces, level function, Calderón-Lozanovskii spaces, r.i. spaces
Mots-clés : Orlicz-Lorentz spaces, Lorentz spaces, dual spaces, level function, Calderón-Lozanovskii spaces, r.i. spaces
@article{STUMA_2014__222_3_286639, author = {Anna Kami\'nska and Karol Le\'snik and Yves Raynaud}, title = {Dual spaces to {Orlicz-Lorentz} spaces}, journal = {Studia Mathematica}, pages = {229}, publisher = {mathdoc}, volume = {222}, number = {3}, year = {2014}, zbl = {1322.46021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_286639/} }
Anna Kamińska; Karol Leśnik; Yves Raynaud. Dual spaces to Orlicz-Lorentz spaces. Studia Mathematica, Tome 222 (2014) no. 3, p. 229. https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_286639/