A lower bound in the law of the iterated logarithm for general lacunary series
Studia Mathematica, Tome 222 (2014) no. 3, p. 207.

Voir la notice de l'article dans European Digital Mathematics Library

We prove a lower bound in a law of the iterated logarithm for sums of the form ∑ k = 1 N a k f ( n k x + c k ) where f satisfies certain conditions and the n k satisfy the Hadamard gap condition n k + 1 / n k ≥ q > 1 .
Classification : 60G46, 42A55, 60F15
Mots-clés : law of the iterated logarithm, lacunary series, martingale difference sequence
@article{STUMA_2014__222_3_285486,
     author = {Charles N. Moore and Xiaojing Zhang},
     title = {A lower bound in the law of the iterated logarithm for general lacunary series},
     journal = {Studia Mathematica},
     pages = {207},
     publisher = {mathdoc},
     volume = {222},
     number = {3},
     year = {2014},
     zbl = {1305.42003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_285486/}
}
TY  - JOUR
AU  - Charles N. Moore
AU  - Xiaojing Zhang
TI  - A lower bound in the law of the iterated logarithm for general lacunary series
JO  - Studia Mathematica
PY  - 2014
SP  - 207
VL  - 222
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_285486/
LA  - en
ID  - STUMA_2014__222_3_285486
ER  - 
%0 Journal Article
%A Charles N. Moore
%A Xiaojing Zhang
%T A lower bound in the law of the iterated logarithm for general lacunary series
%J Studia Mathematica
%D 2014
%P 207
%V 222
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_285486/
%G en
%F STUMA_2014__222_3_285486
Charles N. Moore; Xiaojing Zhang. A lower bound in the law of the iterated logarithm for general lacunary series. Studia Mathematica, Tome 222 (2014) no. 3, p. 207. https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_285486/