A lower bound in the law of the iterated logarithm for general lacunary series
Studia Mathematica, Tome 222 (2014) no. 3, p. 207.
Voir la notice de l'article dans European Digital Mathematics Library
We prove a lower bound in a law of the iterated logarithm for sums of the form
∑
k
=
1
N
a
k
f
(
n
k
x
+
c
k
)
where f satisfies certain conditions and the
n
k
satisfy the Hadamard gap condition
n
k
+
1
/
n
k
≥
q
>
1
.
Classification :
60G46, 42A55, 60F15
Mots-clés : law of the iterated logarithm, lacunary series, martingale difference sequence
Mots-clés : law of the iterated logarithm, lacunary series, martingale difference sequence
@article{STUMA_2014__222_3_285486, author = {Charles N. Moore and Xiaojing Zhang}, title = {A lower bound in the law of the iterated logarithm for general lacunary series}, journal = {Studia Mathematica}, pages = {207}, publisher = {mathdoc}, volume = {222}, number = {3}, year = {2014}, zbl = {1305.42003}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_285486/} }
TY - JOUR AU - Charles N. Moore AU - Xiaojing Zhang TI - A lower bound in the law of the iterated logarithm for general lacunary series JO - Studia Mathematica PY - 2014 SP - 207 VL - 222 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_285486/ LA - en ID - STUMA_2014__222_3_285486 ER -
Charles N. Moore; Xiaojing Zhang. A lower bound in the law of the iterated logarithm for general lacunary series. Studia Mathematica, Tome 222 (2014) no. 3, p. 207. https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_3_285486/