Unconditionality of orthogonal spline systems in $L^{p}$
Studia Mathematica, Tome 222 (2014) no. 1, p. 51.

Voir la notice de l'article dans European Digital Mathematics Library

We prove that given any natural number k and any dense point sequence (tₙ), the corresponding orthonormal spline system is an unconditional basis in reflexive L p .
Classification : 46E30, 41A15, 42C10
Mots-clés : orthonormal spline system, unconditional basis,
@article{STUMA_2014__222_1_286527,
     author = {Markus Passenbrunner},
     title = {Unconditionality of orthogonal spline systems in $L^{p}$},
     journal = {Studia Mathematica},
     pages = {51},
     publisher = {mathdoc},
     volume = {222},
     number = {1},
     year = {2014},
     zbl = {1304.41006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_286527/}
}
TY  - JOUR
AU  - Markus Passenbrunner
TI  - Unconditionality of orthogonal spline systems in $L^{p}$
JO  - Studia Mathematica
PY  - 2014
SP  - 51
VL  - 222
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_286527/
LA  - en
ID  - STUMA_2014__222_1_286527
ER  - 
%0 Journal Article
%A Markus Passenbrunner
%T Unconditionality of orthogonal spline systems in $L^{p}$
%J Studia Mathematica
%D 2014
%P 51
%V 222
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_286527/
%G en
%F STUMA_2014__222_1_286527
Markus Passenbrunner. Unconditionality of orthogonal spline systems in $L^{p}$. Studia Mathematica, Tome 222 (2014) no. 1, p. 51. https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_286527/