Unconditionality of orthogonal spline systems in $L^{p}$
Studia Mathematica, Tome 222 (2014) no. 1, p. 51.
Voir la notice de l'article dans European Digital Mathematics Library
We prove that given any natural number k and any dense point sequence (tₙ), the corresponding orthonormal spline system is an unconditional basis in reflexive
L
p
.
Classification :
46E30, 41A15, 42C10
Mots-clés : orthonormal spline system, unconditional basis,
Mots-clés : orthonormal spline system, unconditional basis,
@article{STUMA_2014__222_1_286527, author = {Markus Passenbrunner}, title = {Unconditionality of orthogonal spline systems in $L^{p}$}, journal = {Studia Mathematica}, pages = {51}, publisher = {mathdoc}, volume = {222}, number = {1}, year = {2014}, zbl = {1304.41006}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_286527/} }
Markus Passenbrunner. Unconditionality of orthogonal spline systems in $L^{p}$. Studia Mathematica, Tome 222 (2014) no. 1, p. 51. https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_286527/