Sharp inequalities for Riesz transforms
Studia Mathematica, Tome 222 (2014) no. 1, p. 1.

Voir la notice de l'article dans European Digital Mathematics Library

We establish the following sharp local estimate for the family R j j = 1 d of Riesz transforms on ℝ d . For any Borel subset A of ℝ d and any function f : ℝ d → ℝ , ∫ A | R j f ( x ) | d x ≤ C p | | f | | L p ( ℝ d ) | A | 1 / q , 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, C p = [ 2 q + 2 Γ ( q + 1 ) / π q + 1 ∑ k = 0 ∞ ( - 1 ) k / ( 2 k + 1 ) q + 1 ] 1 / q , 1 < p < 2, and C p = [ 4 Γ ( q + 1 ) / π q ∑ k = 0 ∞ 1 / ( 2 k + 1 ) q ] 1 / q , 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.
Classification : 60G44, 46E30, 42B10, 42B20
Mots-clés : Riesz transform, Hilbert transform, weak-type inequality, martingale inequality, sharp constant
@article{STUMA_2014__222_1_285404,
     author = {Adam Os\k{e}kowski},
     title = {Sharp inequalities for {Riesz} transforms},
     journal = {Studia Mathematica},
     pages = {1},
     publisher = {mathdoc},
     volume = {222},
     number = {1},
     year = {2014},
     zbl = {1305.42011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_285404/}
}
TY  - JOUR
AU  - Adam Osękowski
TI  - Sharp inequalities for Riesz transforms
JO  - Studia Mathematica
PY  - 2014
SP  - 1
VL  - 222
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_285404/
LA  - en
ID  - STUMA_2014__222_1_285404
ER  - 
%0 Journal Article
%A Adam Osękowski
%T Sharp inequalities for Riesz transforms
%J Studia Mathematica
%D 2014
%P 1
%V 222
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_285404/
%G en
%F STUMA_2014__222_1_285404
Adam Osękowski. Sharp inequalities for Riesz transforms. Studia Mathematica, Tome 222 (2014) no. 1, p. 1. https://geodesic-test.mathdoc.fr/item/STUMA_2014__222_1_285404/