Perron's method and the method of relaxed limits for
Studia Mathematica, Tome 176 (2006) no. 3, p. 249.

Voir la notice de l'article dans European Digital Mathematics Library

We prove that Perron's method and the method of half-relaxed limits of Barles-Perthame works for the so called B-continuous viscosity solutions of a large class of fully nonlinear unbounded partial differential equations in Hilbert spaces. Perron's method extends the existence of B-continuous viscosity solutions to many new equations that are not of Bellman type. The method of half-relaxed limits allows limiting operations with viscosity solutions without any a priori estimates. Possible applications of the method of half-relaxed limits to large deviations, singular perturbation problems, and convergence of finite-dimensional approximations are discussed.
Classification : 35R15, 35J60, 49L20, 49L25
Mots-clés : viscosity solutions, Hamilton-Jacobi-Bellman equations, Perron's method, relaxed limits, Hilbert spaces
@article{STUMA_2006__176_3_285275,
     author = {Djivede Kelome and Andrzej \'Swi\k{e}ch},
     title = {Perron's method and the method of relaxed limits for},
     journal = {Studia Mathematica},
     pages = {249},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2006},
     zbl = {1110.49027},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_285275/}
}
TY  - JOUR
AU  - Djivede Kelome
AU  - Andrzej Święch
TI  - Perron's method and the method of relaxed limits for
JO  - Studia Mathematica
PY  - 2006
SP  - 249
VL  - 176
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_285275/
LA  - en
ID  - STUMA_2006__176_3_285275
ER  - 
%0 Journal Article
%A Djivede Kelome
%A Andrzej Święch
%T Perron's method and the method of relaxed limits for
%J Studia Mathematica
%D 2006
%P 249
%V 176
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_285275/
%G en
%F STUMA_2006__176_3_285275
Djivede Kelome; Andrzej Święch. Perron's method and the method of relaxed limits for. Studia Mathematica, Tome 176 (2006) no. 3, p. 249. https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_285275/