A Gaussian bound for convolutions of functions on locally compact groups
Studia Mathematica, Tome 176 (2006) no. 3, p. 201.

Voir la notice de l'article dans European Digital Mathematics Library

We give new and general sufficient conditions for a Gaussian upper bound on the convolutions K m + n ∗ K m + n - 1 ∗ ⋯ ∗ K m + 1 of a suitable sequence K₁, K₂, K₃, ... of complex-valued functions on a unimodular, compactly generated locally compact group. As applications, we obtain Gaussian bounds for convolutions of suitable probability densities, and for convolutions of small perturbations of densities.
Classification : 60G50, 22E30, 60B15
Mots-clés : probability density, random walk
@article{STUMA_2006__176_3_285125,
     author = {Nick Dungey},
     title = {A {Gaussian} bound for convolutions of functions on locally compact groups},
     journal = {Studia Mathematica},
     pages = {201},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2006},
     zbl = {1105.60008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_285125/}
}
TY  - JOUR
AU  - Nick Dungey
TI  - A Gaussian bound for convolutions of functions on locally compact groups
JO  - Studia Mathematica
PY  - 2006
SP  - 201
VL  - 176
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_285125/
LA  - en
ID  - STUMA_2006__176_3_285125
ER  - 
%0 Journal Article
%A Nick Dungey
%T A Gaussian bound for convolutions of functions on locally compact groups
%J Studia Mathematica
%D 2006
%P 201
%V 176
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_285125/
%G en
%F STUMA_2006__176_3_285125
Nick Dungey. A Gaussian bound for convolutions of functions on locally compact groups. Studia Mathematica, Tome 176 (2006) no. 3, p. 201. https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_285125/