A probabilistic version of the Frequent Hypercyclicity Criterion
Studia Mathematica, Tome 176 (2006) no. 3, p. 279.

Voir la notice de l'article dans European Digital Mathematics Library

For a bounded operator T on a separable infinite-dimensional Banach space X, we give a "random" criterion not involving ergodic theory which implies that T is frequently hypercyclic: there exists a vector x such that for every non-empty open subset U of X, the set of integers n such that Tⁿx belongs to U, has positive lower density. This gives a connection between two different methods for obtaining the frequent hypercyclicity of operators.
Classification : 46B09, 47A16, 47A35
Mots-clés : linear dynamical systems, frequently hypercyclic operators, frequent hypercyclicity criterion, Gaussian mesures, Gaussian sums of Banach spaces
@article{STUMA_2006__176_3_284406,
     author = {Sophie Grivaux},
     title = {A probabilistic version of the {Frequent} {Hypercyclicity} {Criterion}},
     journal = {Studia Mathematica},
     pages = {279},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2006},
     zbl = {1111.47008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_284406/}
}
TY  - JOUR
AU  - Sophie Grivaux
TI  - A probabilistic version of the Frequent Hypercyclicity Criterion
JO  - Studia Mathematica
PY  - 2006
SP  - 279
VL  - 176
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_284406/
LA  - en
ID  - STUMA_2006__176_3_284406
ER  - 
%0 Journal Article
%A Sophie Grivaux
%T A probabilistic version of the Frequent Hypercyclicity Criterion
%J Studia Mathematica
%D 2006
%P 279
%V 176
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_284406/
%G en
%F STUMA_2006__176_3_284406
Sophie Grivaux. A probabilistic version of the Frequent Hypercyclicity Criterion. Studia Mathematica, Tome 176 (2006) no. 3, p. 279. https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_3_284406/