A radial estimate for the maximal operator associated with the free Schrödinger equation
Studia Mathematica, Tome 176 (2006) no. 2, p. 95.
Voir la notice de l'article dans European Digital Mathematics Library
Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator
S
d
and its associated global maximal operator
S
*
*
d
by
(
S
d
f
)
(
x
,
t
)
=
1
/
(
2
π
)
ⁿ
∫
ℝ
ⁿ
e
i
x
·
ξ
e
i
t
|
ξ
|
d
f
̂
(
ξ
)
d
ξ
, f ∈ (ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ,
(
S
*
*
d
f
)
(
x
)
=
s
u
p
t
∈
ℝ
|
1
/
(
2
π
)
ⁿ
∫
ℝ
ⁿ
e
i
x
·
ξ
e
i
t
|
ξ
|
d
f
̂
(
ξ
)
d
ξ
|
, f ∈ (ℝⁿ), x ∈ ℝⁿ,
where f̂ is the Fourier transform of f and (ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2,
S
d
f
is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥ 2n/(n-2), the maximal function estimate
(
∫
ℝ
ⁿ
|
(
S
*
*
d
f
)
(
x
)
|
p
d
x
)
1
/
p
≤
C
|
|
f
|
|
H
s
(
ℝ
ⁿ
)
h
o
l
d
s
f
o
r
s
>
n
(
1
/
2
-
1
/
p
)
a
n
d
f
a
i
l
s
f
o
r
s
<
n
(
1
/
2
-
1
/
p
)
,
w
h
e
r
e
Hs(ℝⁿ)
i
s
t
h
e
L
²
-
S
o
b
o
l
e
v
s
p
a
c
e
w
i
t
h
n
o
r
m
|
|
f
|
|
H
s
(
ℝ
ⁿ
)
=
(
∫
ℝ
ⁿ
(
1
+
|
ξ
|
²
)
s
|
f
̂
(
ξ
)
|
²
d
ξ
)
1
/
2
.
We also prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, n/(n-1) < d < n²/2(n-1), then the estimate
(
∫
ℝ
ⁿ
|
(
S
*
*
d
f
)
(
x
)
|
2
n
/
(
n
-
d
)
d
x
)
(
n
-
d
)
/
2
n
≤
C
|
|
f
|
|
H
s
(
ℝ
ⁿ
)
holds for s > d/2 and fails for s < d/2. These results complement other estimates obtained by Heinig and Wang [7], Kenig, Ponce and Vega [8], Sjölin [9]-[13], Vega [19]-[20], Walther [21]-[23] and Wang [24].
Classification :
42B25, 35Q55
Mots-clés : free Schrödinger equation, maximal functions, spherical harmonics, oscillatory integrals
Mots-clés : free Schrödinger equation, maximal functions, spherical harmonics, oscillatory integrals
@article{STUMA_2006__176_2_286478, author = {Sichun Wang}, title = {A radial estimate for the maximal operator associated with the free {Schr\"odinger} equation}, journal = {Studia Mathematica}, pages = {95}, publisher = {mathdoc}, volume = {176}, number = {2}, year = {2006}, zbl = {1106.42014}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_2_286478/} }
TY - JOUR AU - Sichun Wang TI - A radial estimate for the maximal operator associated with the free Schrödinger equation JO - Studia Mathematica PY - 2006 SP - 95 VL - 176 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_2_286478/ LA - en ID - STUMA_2006__176_2_286478 ER -
Sichun Wang. A radial estimate for the maximal operator associated with the free Schrödinger equation. Studia Mathematica, Tome 176 (2006) no. 2, p. 95. https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_2_286478/