On operators which factor through $l_{p}$ or c₀
Studia Mathematica, Tome 176 (2006) no. 2, p. 177.

Voir la notice de l'article dans European Digital Mathematics Library

Let 1 < p < ∞. Let X be a subspace of a space Z with a shrinking F.D.D. (Eₙ) which satisfies a block lower-p estimate. Then any bounded linear operator T from X which satisfies an upper-(C,p)-tree estimate factors through a subspace of ( ∑ F ₙ ) l p , where (Fₙ) is a blocking of (Eₙ). In particular, we prove that an operator from L p (2 < p < ∞) satisfies an upper-(C,p)-tree estimate if and only if it factors through l p . This gives an answer to a question of W. B. Johnson. We also prove that if X is a Banach space with X* separable and T is an operator from X which satisfies an upper-(C,∞)-estimate, then T factors through a subspace of c₀.
Classification : 46B03, 46B25
Mots-clés : factorisation through, finite-dimensional decomposition, weakly null trees
@article{STUMA_2006__176_2_285025,
     author = {Bentuo Zheng},
     title = {On operators which factor through $l_{p}$ or c₀},
     journal = {Studia Mathematica},
     pages = {177},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2006},
     zbl = {1117.46008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_2_285025/}
}
TY  - JOUR
AU  - Bentuo Zheng
TI  - On operators which factor through $l_{p}$ or c₀
JO  - Studia Mathematica
PY  - 2006
SP  - 177
VL  - 176
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_2_285025/
LA  - en
ID  - STUMA_2006__176_2_285025
ER  - 
%0 Journal Article
%A Bentuo Zheng
%T On operators which factor through $l_{p}$ or c₀
%J Studia Mathematica
%D 2006
%P 177
%V 176
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_2_285025/
%G en
%F STUMA_2006__176_2_285025
Bentuo Zheng. On operators which factor through $l_{p}$ or c₀. Studia Mathematica, Tome 176 (2006) no. 2, p. 177. https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_2_285025/