Hankel forms and sums of random variables
Studia Mathematica, Tome 176 (2006) no. 1, p. 85.

Voir la notice de l'article dans European Digital Mathematics Library

A well known theorem of Nehari asserts on the circle group that bilinear forms in H² can be lifted to linear functionals on H¹. We show that this result can be extended to Hankel forms in infinitely many variables of a certain type. As a corollary we find a new proof that all the L p norms on the class of Steinhaus series are equivalent.
Classification : 43A15, 15A63, 30B50
Mots-clés : Hankel form, lifting property, Hilbert-Schmidt form, homogeneous Fourier series
@article{STUMA_2006__176_1_284816,
     author = {Henry Helson},
     title = {Hankel forms and sums of random variables},
     journal = {Studia Mathematica},
     pages = {85},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2006},
     zbl = {1108.43003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284816/}
}
TY  - JOUR
AU  - Henry Helson
TI  - Hankel forms and sums of random variables
JO  - Studia Mathematica
PY  - 2006
SP  - 85
VL  - 176
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284816/
LA  - en
ID  - STUMA_2006__176_1_284816
ER  - 
%0 Journal Article
%A Henry Helson
%T Hankel forms and sums of random variables
%J Studia Mathematica
%D 2006
%P 85
%V 176
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284816/
%G en
%F STUMA_2006__176_1_284816
Henry Helson. Hankel forms and sums of random variables. Studia Mathematica, Tome 176 (2006) no. 1, p. 85. https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284816/