L¹ representation of Riesz spaces
Studia Mathematica, Tome 176 (2006) no. 1, p. 61.

Voir la notice de l'article dans European Digital Mathematics Library

Let E be a Riesz space. By defining the spaces L ¹ E and L E ∞ of E, we prove that the center Z ( L ¹ E ) of L ¹ E is L E ∞ and show that the injectivity of the Arens homomorphism m: Z(E)” → Z(E˜) is equivalent to the equality L ¹ E = Z ( E ) ' . Finally, we also give some representation of an order continuous Banach lattice E with a weak unit and of the order dual E˜ of E in L ¹ E which are different from the representations appearing in the literature.
Classification : 47B65, 46A40
Mots-clés : orthomorphism, ideal center, uniformly complete Riesz space, Banach lattice, -algebra, Arens homomorphism
@article{STUMA_2006__176_1_284621,
     author = {Bahri Turan},
     title = {L{\textonesuperior} representation of {Riesz} spaces},
     journal = {Studia Mathematica},
     pages = {61},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2006},
     zbl = {1122.46001},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284621/}
}
TY  - JOUR
AU  - Bahri Turan
TI  - L¹ representation of Riesz spaces
JO  - Studia Mathematica
PY  - 2006
SP  - 61
VL  - 176
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284621/
LA  - en
ID  - STUMA_2006__176_1_284621
ER  - 
%0 Journal Article
%A Bahri Turan
%T L¹ representation of Riesz spaces
%J Studia Mathematica
%D 2006
%P 61
%V 176
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284621/
%G en
%F STUMA_2006__176_1_284621
Bahri Turan. L¹ representation of Riesz spaces. Studia Mathematica, Tome 176 (2006) no. 1, p. 61. https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284621/