Images of Gaussian random fields: Salem sets and interior points
Studia Mathematica, Tome 176 (2006) no. 1, p. 37.

Voir la notice de l'article dans European Digital Mathematics Library

Let X = X ( t ) , t ∈ ℝ N be a Gaussian random field in ℝ d with stationary increments. For any Borel set E ⊂ ℝ N , we provide sufficient conditions for the image X(E) to be a Salem set or to have interior points by studying the asymptotic properties of the Fourier transform of the occupation measure of X and the continuity of the local times of X on E, respectively. Our results extend and improve the previous theorems of Pitt [24] and Kahane [12,13] for fractional Brownian motion.
Classification : 60G15, 60G17, 60G60, 43A46, 42B10, 28A80
Mots-clés : fractional Brownian motion, fractional Riesz-Bessel motion, Hausdorff dimension, Fourier dimension, local times
@article{STUMA_2006__176_1_284400,
     author = {Narn-Rueih Shieh and Yimin Xiao},
     title = {Images of {Gaussian} random fields: {Salem} sets and interior points},
     journal = {Studia Mathematica},
     pages = {37},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2006},
     zbl = {1105.60023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284400/}
}
TY  - JOUR
AU  - Narn-Rueih Shieh
AU  - Yimin Xiao
TI  - Images of Gaussian random fields: Salem sets and interior points
JO  - Studia Mathematica
PY  - 2006
SP  - 37
VL  - 176
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284400/
LA  - en
ID  - STUMA_2006__176_1_284400
ER  - 
%0 Journal Article
%A Narn-Rueih Shieh
%A Yimin Xiao
%T Images of Gaussian random fields: Salem sets and interior points
%J Studia Mathematica
%D 2006
%P 37
%V 176
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284400/
%G en
%F STUMA_2006__176_1_284400
Narn-Rueih Shieh; Yimin Xiao. Images of Gaussian random fields: Salem sets and interior points. Studia Mathematica, Tome 176 (2006) no. 1, p. 37. https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284400/