Images of Gaussian random fields: Salem sets and interior points
Studia Mathematica, Tome 176 (2006) no. 1, p. 37.
Voir la notice de l'article dans European Digital Mathematics Library
Let
X
=
X
(
t
)
,
t
∈
ℝ
N
be a Gaussian random field in
ℝ
d
with stationary increments. For any Borel set
E
⊂
ℝ
N
, we provide sufficient conditions for the image X(E) to be a Salem set or to have interior points by studying the asymptotic properties of the Fourier transform of the occupation measure of X and the continuity of the local times of X on E, respectively. Our results extend and improve the previous theorems of Pitt [24] and Kahane [12,13] for fractional Brownian motion.
Classification :
60G15, 60G17, 60G60, 43A46, 42B10, 28A80
Mots-clés : fractional Brownian motion, fractional Riesz-Bessel motion, Hausdorff dimension, Fourier dimension, local times
Mots-clés : fractional Brownian motion, fractional Riesz-Bessel motion, Hausdorff dimension, Fourier dimension, local times
@article{STUMA_2006__176_1_284400, author = {Narn-Rueih Shieh and Yimin Xiao}, title = {Images of {Gaussian} random fields: {Salem} sets and interior points}, journal = {Studia Mathematica}, pages = {37}, publisher = {mathdoc}, volume = {176}, number = {1}, year = {2006}, zbl = {1105.60023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284400/} }
TY - JOUR AU - Narn-Rueih Shieh AU - Yimin Xiao TI - Images of Gaussian random fields: Salem sets and interior points JO - Studia Mathematica PY - 2006 SP - 37 VL - 176 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284400/ LA - en ID - STUMA_2006__176_1_284400 ER -
Narn-Rueih Shieh; Yimin Xiao. Images of Gaussian random fields: Salem sets and interior points. Studia Mathematica, Tome 176 (2006) no. 1, p. 37. https://geodesic-test.mathdoc.fr/item/STUMA_2006__176_1_284400/