On uniqueness of G-measures and g-measures
Studia Mathematica, Tome 119 (1996) no. 3, p. 255.

Voir la notice de l'article dans European Digital Mathematics Library

We give a simple proof of the sufficiency of a log-lipschitzian condition for the uniqueness of G-measures and g-measures which were studied by G. Brown, A. H. Dooley and M. Keane. In the opposite direction, we show that the lipschitzian condition together with positivity is not sufficient. In the special case where the defining function depends only upon two coordinates, we find a necessary and sufficient condition. The special case of Riesz products is discussed and the Hausdorff dimension of Riesz products is calculated.
Classification : 28D05, 43A05
Mots-clés : G-measures, g-measures, ergodic measures, Riesz products, quasi-invariance, dimension of measures, -measures, log-Lipschitzian condition, uniqueness, measures
@article{STUMA_1996__119_3_216299,
     author = {Ai Fan},
     title = {On uniqueness of {G-measures} and g-measures},
     journal = {Studia Mathematica},
     pages = {255},
     publisher = {mathdoc},
     volume = {119},
     number = {3},
     year = {1996},
     zbl = {0863.28008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_3_216299/}
}
TY  - JOUR
AU  - Ai Fan
TI  - On uniqueness of G-measures and g-measures
JO  - Studia Mathematica
PY  - 1996
SP  - 255
VL  - 119
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_3_216299/
LA  - en
ID  - STUMA_1996__119_3_216299
ER  - 
%0 Journal Article
%A Ai Fan
%T On uniqueness of G-measures and g-measures
%J Studia Mathematica
%D 1996
%P 255
%V 119
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_3_216299/
%G en
%F STUMA_1996__119_3_216299
Ai Fan. On uniqueness of G-measures and g-measures. Studia Mathematica, Tome 119 (1996) no. 3, p. 255. https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_3_216299/