Regularity properties of singular integral operators
Studia Mathematica, Tome 119 (1996) no. 3, p. 199.

Voir la notice de l'article dans European Digital Mathematics Library

For s>0, we consider bounded linear operators from D ( ℝ n ) into D ' ( ℝ n ) whose kernels K satisfy the conditions | ∂ x γ K ( x , y ) | ≤ C γ | x - y | - n + s - | γ | for x≠y, |γ|≤ [s]+1, | ∇ y ∂ x γ K ( x , y ) | ≤ C γ | x - y | - n + s - | γ | - 1 for |γ|=[s], x≠y. We establish a new criterion for the boundedness of these operators from L 2 ( ℝ n ) into the homogeneous Sobolev space Ḣ s ( ℝ n ) . This is an extension of the well-known T(1) Theorem due to David and Journé. Our arguments make use of the function T(1) and the BMO-Sobolev space. We give some applications to the Besov and Triebel-Lizorkin spaces as well as some other potential spaces.
Classification : 46E35, 42B20, 42B30
Mots-clés : Besov spaces, regularity, singular integral operators, Theorem, BMO-Sobolev space, Triebel-Lizorkin spaces
@article{STUMA_1996__119_3_216296,
     author = {Abdellah Youssfi},
     title = {Regularity properties of singular integral operators},
     journal = {Studia Mathematica},
     pages = {199},
     publisher = {mathdoc},
     volume = {119},
     number = {3},
     year = {1996},
     zbl = {0857.42008},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_3_216296/}
}
TY  - JOUR
AU  - Abdellah Youssfi
TI  - Regularity properties of singular integral operators
JO  - Studia Mathematica
PY  - 1996
SP  - 199
VL  - 119
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_3_216296/
LA  - en
ID  - STUMA_1996__119_3_216296
ER  - 
%0 Journal Article
%A Abdellah Youssfi
%T Regularity properties of singular integral operators
%J Studia Mathematica
%D 1996
%P 199
%V 119
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_3_216296/
%G en
%F STUMA_1996__119_3_216296
Abdellah Youssfi. Regularity properties of singular integral operators. Studia Mathematica, Tome 119 (1996) no. 3, p. 199. https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_3_216296/