On the axiomatic theory of spectrum II
Studia Mathematica, Tome 119 (1996) no. 2, p. 129.

Voir la notice de l'article dans European Digital Mathematics Library

We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.
Classification : 47A05, 47A10, 47A53
Mots-clés : spectral mapping theorem, ascent, descent, semiregular operators, quasi-Fredholm operators, kernels, ranges, spectral mapping property
@article{STUMA_1996__119_2_216290,
     author = {M. Mbekhta and V. M\"uller},
     title = {On the axiomatic theory of spectrum {II}},
     journal = {Studia Mathematica},
     pages = {129},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {1996},
     zbl = {0857.47002},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_2_216290/}
}
TY  - JOUR
AU  - M. Mbekhta
AU  - V. Müller
TI  - On the axiomatic theory of spectrum II
JO  - Studia Mathematica
PY  - 1996
SP  - 129
VL  - 119
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_2_216290/
LA  - en
ID  - STUMA_1996__119_2_216290
ER  - 
%0 Journal Article
%A M. Mbekhta
%A V. Müller
%T On the axiomatic theory of spectrum II
%J Studia Mathematica
%D 1996
%P 129
%V 119
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_2_216290/
%G en
%F STUMA_1996__119_2_216290
M. Mbekhta; V. Müller. On the axiomatic theory of spectrum II. Studia Mathematica, Tome 119 (1996) no. 2, p. 129. https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_2_216290/