On the axiomatic theory of spectrum II
Studia Mathematica, Tome 119 (1996) no. 2, p. 129.
Voir la notice de l'article dans European Digital Mathematics Library
We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.
Classification :
47A05, 47A10, 47A53
Mots-clés : spectral mapping theorem, ascent, descent, semiregular operators, quasi-Fredholm operators, kernels, ranges, spectral mapping property
Mots-clés : spectral mapping theorem, ascent, descent, semiregular operators, quasi-Fredholm operators, kernels, ranges, spectral mapping property
@article{STUMA_1996__119_2_216290, author = {M. Mbekhta and V. M\"uller}, title = {On the axiomatic theory of spectrum {II}}, journal = {Studia Mathematica}, pages = {129}, publisher = {mathdoc}, volume = {119}, number = {2}, year = {1996}, zbl = {0857.47002}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_2_216290/} }
M. Mbekhta; V. Müller. On the axiomatic theory of spectrum II. Studia Mathematica, Tome 119 (1996) no. 2, p. 129. https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_2_216290/