Decomposable embeddings, complete trajectories, and invariant subspaces
Studia Mathematica, Tome 119 (1996) no. 1, p. 65.

Voir la notice de l'article dans European Digital Mathematics Library

We produce closed nontrivial invariant subspaces for closed (possibly unbounded) linear operators, A, on a Banach space, that may be embedded between decomposable operators on spaces with weaker and stronger topologies. We show that this can be done under many conditions on orbits, including when both A and A* have nontrivial non-quasi-analytic complete trajectories, and when both A and A* generate bounded semigroups that are not stable.
Classification : 47D06, 47A11, 47A15, 47B40
Mots-clés : closed nontrivial invariant subspaces, decomposable operators, non-quasi-analytic complete trajectories, bounded semigroups
@article{STUMA_1996__119_1_216286,
     author = {Ralph deLaubenfels and Ph\'ong V\~{u}},
     title = {Decomposable embeddings, complete trajectories, and invariant subspaces},
     journal = {Studia Mathematica},
     pages = {65},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {1996},
     zbl = {0861.47004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216286/}
}
TY  - JOUR
AU  - Ralph deLaubenfels
AU  - Phóng Vũ
TI  - Decomposable embeddings, complete trajectories, and invariant subspaces
JO  - Studia Mathematica
PY  - 1996
SP  - 65
VL  - 119
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216286/
LA  - en
ID  - STUMA_1996__119_1_216286
ER  - 
%0 Journal Article
%A Ralph deLaubenfels
%A Phóng Vũ
%T Decomposable embeddings, complete trajectories, and invariant subspaces
%J Studia Mathematica
%D 1996
%P 65
%V 119
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216286/
%G en
%F STUMA_1996__119_1_216286
Ralph deLaubenfels; Phóng Vũ. Decomposable embeddings, complete trajectories, and invariant subspaces. Studia Mathematica, Tome 119 (1996) no. 1, p. 65. https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216286/