A compact set without Markov’s property but with an extension operator for $C^∞$-functions
Studia Mathematica, Tome 119 (1996) no. 1, p. 27.

Voir la notice de l'article dans European Digital Mathematics Library

We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator L : ℇ ( K ) → C ∞ [ 0 , 1 ] . At the same time, Markov’s inequality is not satisfied for certain polynomials on K.
Classification : 46E10, 41A17
Mots-clés : compact set, Whitney functions, rapidly decreasing sequences, linear continuous extension operator, Markov's inequality
@article{STUMA_1996__119_1_216284,
     author = {Alexander Goncharov},
     title = {A compact set without {Markov{\textquoteright}s} property but with an extension operator for $C^\ensuremath{\infty}$-functions},
     journal = {Studia Mathematica},
     pages = {27},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {1996},
     zbl = {0857.46013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216284/}
}
TY  - JOUR
AU  - Alexander Goncharov
TI  - A compact set without Markov’s property but with an extension operator for $C^∞$-functions
JO  - Studia Mathematica
PY  - 1996
SP  - 27
VL  - 119
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216284/
LA  - en
ID  - STUMA_1996__119_1_216284
ER  - 
%0 Journal Article
%A Alexander Goncharov
%T A compact set without Markov’s property but with an extension operator for $C^∞$-functions
%J Studia Mathematica
%D 1996
%P 27
%V 119
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216284/
%G en
%F STUMA_1996__119_1_216284
Alexander Goncharov. A compact set without Markov’s property but with an extension operator for $C^∞$-functions. Studia Mathematica, Tome 119 (1996) no. 1, p. 27. https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216284/