A compact set without Markov’s property but with an extension operator for $C^∞$-functions
Studia Mathematica, Tome 119 (1996) no. 1, p. 27.
Voir la notice de l'article dans European Digital Mathematics Library
We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator
L
:
ℇ
(
K
)
→
C
∞
[
0
,
1
]
. At the same time, Markov’s inequality is not satisfied for certain polynomials on K.
Classification :
46E10, 41A17
Mots-clés : compact set, Whitney functions, rapidly decreasing sequences, linear continuous extension operator, Markov's inequality
Mots-clés : compact set, Whitney functions, rapidly decreasing sequences, linear continuous extension operator, Markov's inequality
@article{STUMA_1996__119_1_216284, author = {Alexander Goncharov}, title = {A compact set without {Markov{\textquoteright}s} property but with an extension operator for $C^\ensuremath{\infty}$-functions}, journal = {Studia Mathematica}, pages = {27}, publisher = {mathdoc}, volume = {119}, number = {1}, year = {1996}, zbl = {0857.46013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216284/} }
TY - JOUR AU - Alexander Goncharov TI - A compact set without Markov’s property but with an extension operator for $C^∞$-functions JO - Studia Mathematica PY - 1996 SP - 27 VL - 119 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216284/ LA - en ID - STUMA_1996__119_1_216284 ER -
Alexander Goncharov. A compact set without Markov’s property but with an extension operator for $C^∞$-functions. Studia Mathematica, Tome 119 (1996) no. 1, p. 27. https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216284/