On asymptotic density and uniformly distributed sequences
Studia Mathematica, Tome 119 (1996) no. 1, p. 17.

Voir la notice de l'article dans European Digital Mathematics Library

Assuming Martin's axiom we show that if X is a dyadic space of weight at most continuum then every Radon measure on X admits a uniformly distributed sequence. This answers a problem posed by Mercourakis [10]. Our proof is based on an auxiliary result concerning finitely additive measures on ω and asymptotic density.
Classification : 11K06, 11B05, 28C15
Mots-clés : uniformly distributed sequences, asymptotic density, finitely additive measure, Martin's axiom, Radon measure
@article{STUMA_1996__119_1_216282,
     author = {Ryszard Frankiewicz and Grzegorz Plebanek},
     title = {On asymptotic density and uniformly distributed sequences},
     journal = {Studia Mathematica},
     pages = {17},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {1996},
     zbl = {0860.11004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216282/}
}
TY  - JOUR
AU  - Ryszard Frankiewicz
AU  - Grzegorz Plebanek
TI  - On asymptotic density and uniformly distributed sequences
JO  - Studia Mathematica
PY  - 1996
SP  - 17
VL  - 119
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216282/
LA  - en
ID  - STUMA_1996__119_1_216282
ER  - 
%0 Journal Article
%A Ryszard Frankiewicz
%A Grzegorz Plebanek
%T On asymptotic density and uniformly distributed sequences
%J Studia Mathematica
%D 1996
%P 17
%V 119
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216282/
%G en
%F STUMA_1996__119_1_216282
Ryszard Frankiewicz; Grzegorz Plebanek. On asymptotic density and uniformly distributed sequences. Studia Mathematica, Tome 119 (1996) no. 1, p. 17. https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216282/