On asymptotic density and uniformly distributed sequences
Studia Mathematica, Tome 119 (1996) no. 1, p. 17.
Voir la notice de l'article dans European Digital Mathematics Library
Assuming Martin's axiom we show that if X is a dyadic space of weight at most continuum then every Radon measure on X admits a uniformly distributed sequence. This answers a problem posed by Mercourakis [10]. Our proof is based on an auxiliary result concerning finitely additive measures on ω and asymptotic density.
Classification :
11K06, 11B05, 28C15
Mots-clés : uniformly distributed sequences, asymptotic density, finitely additive measure, Martin's axiom, Radon measure
Mots-clés : uniformly distributed sequences, asymptotic density, finitely additive measure, Martin's axiom, Radon measure
@article{STUMA_1996__119_1_216282, author = {Ryszard Frankiewicz and Grzegorz Plebanek}, title = {On asymptotic density and uniformly distributed sequences}, journal = {Studia Mathematica}, pages = {17}, publisher = {mathdoc}, volume = {119}, number = {1}, year = {1996}, zbl = {0860.11004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216282/} }
TY - JOUR AU - Ryszard Frankiewicz AU - Grzegorz Plebanek TI - On asymptotic density and uniformly distributed sequences JO - Studia Mathematica PY - 1996 SP - 17 VL - 119 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216282/ LA - en ID - STUMA_1996__119_1_216282 ER -
Ryszard Frankiewicz; Grzegorz Plebanek. On asymptotic density and uniformly distributed sequences. Studia Mathematica, Tome 119 (1996) no. 1, p. 17. https://geodesic-test.mathdoc.fr/item/STUMA_1996__119_1_216282/