Generic smooth cocycles of degree zero over irrational rotations
Studia Mathematica, Tome 115 (1995) no. 3, p. 241.

Voir la notice de l'article dans European Digital Mathematics Library

If a rotation α of has unbounded partial quotients then “most” of its skew-product diffeomorphic extensions to the 2-torus × defined by C 1 cocycles of topological degree zero enjoy nontrivial ergodic properties. In fact they admit a cyclic approximation with speed o(1/n) and have nondiscrete (simple) spectrum. Similar results are obtained for C r cocycles if α admits a sufficiently good approximation by rationals. For a.e. α and generic C 1 cocycles the speed can be improved to o(1/(nlogn)). For generic α and generic C r cocycles (r = 1,...,∞) the spectral measure of the skew product has a continuous component and Hausdorff dimension zero.
Classification : 28D05
Mots-clés : Anzai skew product, weakly mixing cocycle, cyclic approximation, simple spectrum, cocycles, skew product diffeomorphisms
@article{STUMA_1995__115_3_216210,
     author = {A. Iwanik},
     title = {Generic smooth cocycles of degree zero over irrational rotations},
     journal = {Studia Mathematica},
     pages = {241},
     publisher = {mathdoc},
     volume = {115},
     number = {3},
     year = {1995},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_3_216210/}
}
TY  - JOUR
AU  - A. Iwanik
TI  - Generic smooth cocycles of degree zero over irrational rotations
JO  - Studia Mathematica
PY  - 1995
SP  - 241
VL  - 115
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_3_216210/
LA  - en
ID  - STUMA_1995__115_3_216210
ER  - 
%0 Journal Article
%A A. Iwanik
%T Generic smooth cocycles of degree zero over irrational rotations
%J Studia Mathematica
%D 1995
%P 241
%V 115
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_3_216210/
%G en
%F STUMA_1995__115_3_216210
A. Iwanik. Generic smooth cocycles of degree zero over irrational rotations. Studia Mathematica, Tome 115 (1995) no. 3, p. 241. https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_3_216210/