Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II
Studia Mathematica, Tome 115 (1995) no. 3, p. 219.

Voir la notice de l'article dans European Digital Mathematics Library

On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted L p -space (0 < p < ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some L p -estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space A 2 .
Classification : 32A07, 32A25, 32M15
Mots-clés : -mapping, weighted Bergman projections, Siegel domains of type II, Plancherel-Gindikin formula
@article{STUMA_1995__115_3_216209,
     author = {David B\'ekoll\'e and Anatole Temgoua Kagou},
     title = {Reproducing properties and $L^p$-estimates for {Bergman} projections in {Siegel} domains of type {II}},
     journal = {Studia Mathematica},
     pages = {219},
     publisher = {mathdoc},
     volume = {115},
     number = {3},
     year = {1995},
     zbl = {0842.32016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_3_216209/}
}
TY  - JOUR
AU  - David Békollé
AU  - Anatole Temgoua Kagou
TI  - Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II
JO  - Studia Mathematica
PY  - 1995
SP  - 219
VL  - 115
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_3_216209/
LA  - en
ID  - STUMA_1995__115_3_216209
ER  - 
%0 Journal Article
%A David Békollé
%A Anatole Temgoua Kagou
%T Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II
%J Studia Mathematica
%D 1995
%P 219
%V 115
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_3_216209/
%G en
%F STUMA_1995__115_3_216209
David Békollé; Anatole Temgoua Kagou. Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II. Studia Mathematica, Tome 115 (1995) no. 3, p. 219. https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_3_216209/