Double exponential integrability, Bessel potentials and embedding theorems
Studia Mathematica, Tome 115 (1995) no. 2, p. 151.

Voir la notice de l'article dans European Digital Mathematics Library

This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.
Classification : 47B38, 46E30, 46E35, 26D10
Mots-clés : Bessel potential, Riesz potential, generalized Lorentz-Zygmund spaces, exponential integrability, Hardy inequality, Orlicz spaces, Bessel potential spaces, double exponential integrability of the Bessel potential, Lorentz-Zygmund spaces
@article{STUMA_1995__115_2_216205,
     author = {David Edmunds and Petr Gurka and Bohum{\'\i}r Opic},
     title = {Double exponential integrability, {Bessel} potentials and embedding theorems},
     journal = {Studia Mathematica},
     pages = {151},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {1995},
     zbl = {0829.47024},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216205/}
}
TY  - JOUR
AU  - David Edmunds
AU  - Petr Gurka
AU  - Bohumír Opic
TI  - Double exponential integrability, Bessel potentials and embedding theorems
JO  - Studia Mathematica
PY  - 1995
SP  - 151
VL  - 115
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216205/
LA  - en
ID  - STUMA_1995__115_2_216205
ER  - 
%0 Journal Article
%A David Edmunds
%A Petr Gurka
%A Bohumír Opic
%T Double exponential integrability, Bessel potentials and embedding theorems
%J Studia Mathematica
%D 1995
%P 151
%V 115
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216205/
%G en
%F STUMA_1995__115_2_216205
David Edmunds; Petr Gurka; Bohumír Opic. Double exponential integrability, Bessel potentials and embedding theorems. Studia Mathematica, Tome 115 (1995) no. 2, p. 151. https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216205/