$L^p$ weighted inequalities for the dyadic square function
Studia Mathematica, Tome 115 (1995) no. 2, p. 135.
Voir la notice de l'article dans European Digital Mathematics Library
We prove that
ʃ
(
S
d
f
)
p
V
d
x
≤
C
p
,
n
ʃ
|
f
|
p
M
d
(
[
p
/
2
]
+
2
)
V
d
x
, where
S
d
is the dyadic square function,
M
d
(
k
)
is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.
Classification :
42B25
Mots-clés : dyadic square function, dyadic maximal function, weighted inequality, BMO
Mots-clés : dyadic square function, dyadic maximal function, weighted inequality, BMO
@article{STUMA_1995__115_2_216204, author = {Akihito Uchiyama}, title = {$L^p$ weighted inequalities for the dyadic square function}, journal = {Studia Mathematica}, pages = {135}, publisher = {mathdoc}, volume = {115}, number = {2}, year = {1995}, zbl = {0842.42010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216204/} }
Akihito Uchiyama. $L^p$ weighted inequalities for the dyadic square function. Studia Mathematica, Tome 115 (1995) no. 2, p. 135. https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216204/