$L^p$ weighted inequalities for the dyadic square function
Studia Mathematica, Tome 115 (1995) no. 2, p. 135.

Voir la notice de l'article dans European Digital Mathematics Library

We prove that ʃ ( S d f ) p V d x ≤ C p , n ʃ | f | p M d ( [ p / 2 ] + 2 ) V d x , where S d is the dyadic square function, M d ( k ) is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.
Classification : 42B25
Mots-clés : dyadic square function, dyadic maximal function, weighted inequality, BMO
@article{STUMA_1995__115_2_216204,
     author = {Akihito Uchiyama},
     title = {$L^p$ weighted inequalities for the dyadic square function},
     journal = {Studia Mathematica},
     pages = {135},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {1995},
     zbl = {0842.42010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216204/}
}
TY  - JOUR
AU  - Akihito Uchiyama
TI  - $L^p$ weighted inequalities for the dyadic square function
JO  - Studia Mathematica
PY  - 1995
SP  - 135
VL  - 115
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216204/
LA  - en
ID  - STUMA_1995__115_2_216204
ER  - 
%0 Journal Article
%A Akihito Uchiyama
%T $L^p$ weighted inequalities for the dyadic square function
%J Studia Mathematica
%D 1995
%P 135
%V 115
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216204/
%G en
%F STUMA_1995__115_2_216204
Akihito Uchiyama. $L^p$ weighted inequalities for the dyadic square function. Studia Mathematica, Tome 115 (1995) no. 2, p. 135. https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216204/