Local polynomials are polynomials
Studia Mathematica, Tome 115 (1995) no. 2, p. 105.

Voir la notice de l'article dans European Digital Mathematics Library

We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.
Classification : 47A05, 47A56, 47A60
Mots-clés : local polynomials, operator-valued function
@article{STUMA_1995__115_2_216201,
     author = {C. Fong and G. Lumer and E. Nordgren and H. Radjavi and P. Rosenthal},
     title = {Local polynomials are polynomials},
     journal = {Studia Mathematica},
     pages = {105},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {1995},
     zbl = {0844.47009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216201/}
}
TY  - JOUR
AU  - C. Fong
AU  - G. Lumer
AU  - E. Nordgren
AU  - H. Radjavi
AU  - P. Rosenthal
TI  - Local polynomials are polynomials
JO  - Studia Mathematica
PY  - 1995
SP  - 105
VL  - 115
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216201/
LA  - en
ID  - STUMA_1995__115_2_216201
ER  - 
%0 Journal Article
%A C. Fong
%A G. Lumer
%A E. Nordgren
%A H. Radjavi
%A P. Rosenthal
%T Local polynomials are polynomials
%J Studia Mathematica
%D 1995
%P 105
%V 115
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216201/
%G en
%F STUMA_1995__115_2_216201
C. Fong; G. Lumer; E. Nordgren; H. Radjavi; P. Rosenthal. Local polynomials are polynomials. Studia Mathematica, Tome 115 (1995) no. 2, p. 105. https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216201/