Local polynomials are polynomials
Studia Mathematica, Tome 115 (1995) no. 2, p. 105.
Voir la notice de l'article dans European Digital Mathematics Library
We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.
@article{STUMA_1995__115_2_216201, author = {C. Fong and G. Lumer and E. Nordgren and H. Radjavi and P. Rosenthal}, title = {Local polynomials are polynomials}, journal = {Studia Mathematica}, pages = {105}, publisher = {mathdoc}, volume = {115}, number = {2}, year = {1995}, zbl = {0844.47009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216201/} }
TY - JOUR AU - C. Fong AU - G. Lumer AU - E. Nordgren AU - H. Radjavi AU - P. Rosenthal TI - Local polynomials are polynomials JO - Studia Mathematica PY - 1995 SP - 105 VL - 115 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216201/ LA - en ID - STUMA_1995__115_2_216201 ER -
C. Fong; G. Lumer; E. Nordgren; H. Radjavi; P. Rosenthal. Local polynomials are polynomials. Studia Mathematica, Tome 115 (1995) no. 2, p. 105. https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_2_216201/