A lifting theorem for locally convex subspaces of $L_0$
Studia Mathematica, Tome 115 (1995) no. 1, p. 73.

Voir la notice de l'article dans European Digital Mathematics Library

We prove that for every closed locally convex subspace E of L 0 and for any continuous linear operator T from L 0 to L 0 / E there is a continuous linear operator S from L 0 to L 0 such that T = QS where Q is the quotient map from L 0 to L 0 / E .
Classification : 46M10, 46E30, 46G15
Mots-clés : lifting theorem
@article{STUMA_1995__115_1_216199,
     author = {R. Faber},
     title = {A lifting theorem for locally convex subspaces of $L_0$},
     journal = {Studia Mathematica},
     pages = {73},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {1995},
     zbl = {0829.46054},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_1_216199/}
}
TY  - JOUR
AU  - R. Faber
TI  - A lifting theorem for locally convex subspaces of $L_0$
JO  - Studia Mathematica
PY  - 1995
SP  - 73
VL  - 115
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_1_216199/
LA  - en
ID  - STUMA_1995__115_1_216199
ER  - 
%0 Journal Article
%A R. Faber
%T A lifting theorem for locally convex subspaces of $L_0$
%J Studia Mathematica
%D 1995
%P 73
%V 115
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_1_216199/
%G en
%F STUMA_1995__115_1_216199
R. Faber. A lifting theorem for locally convex subspaces of $L_0$. Studia Mathematica, Tome 115 (1995) no. 1, p. 73. https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_1_216199/