Some results about Beurling algebras with applications to operator theory
Studia Mathematica, Tome 115 (1995) no. 1, p. 39.

Voir la notice de l'article dans European Digital Mathematics Library

We prove that certain maximal ideals in Beurling algebras on the unit disc have approximate identities, and show the existence of functions with certain properties in these maximal ideals. We then use these results to prove that if T is a bounded operator on a Banach space X satisfying ∥ T n ∥ = O ( n β ) as n → ∞ for some β ≥ 0, then ∑ n = 1 ∞ ∥ ( 1 - T ) n x ∥ / ∥ ( 1 - T ) n - 1 x ∥ diverges for every x ∈ X such that ( 1 - T ) [ β ] + 1 x ≠ 0 .
Classification : 47A30, 43A15, 46J15, 46J20
Mots-clés : power bounded operator, maximal ideals in Beurling algebras on the unit disc, approximate identities
@article{STUMA_1995__115_1_216197,
     author = {Thomas Vils Pedersen},
     title = {Some results about {Beurling} algebras with applications to operator theory},
     journal = {Studia Mathematica},
     pages = {39},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {1995},
     zbl = {0831.46058},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_1_216197/}
}
TY  - JOUR
AU  - Thomas Vils Pedersen
TI  - Some results about Beurling algebras with applications to operator theory
JO  - Studia Mathematica
PY  - 1995
SP  - 39
VL  - 115
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_1_216197/
LA  - en
ID  - STUMA_1995__115_1_216197
ER  - 
%0 Journal Article
%A Thomas Vils Pedersen
%T Some results about Beurling algebras with applications to operator theory
%J Studia Mathematica
%D 1995
%P 39
%V 115
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_1_216197/
%G en
%F STUMA_1995__115_1_216197
Thomas Vils Pedersen. Some results about Beurling algebras with applications to operator theory. Studia Mathematica, Tome 115 (1995) no. 1, p. 39. https://geodesic-test.mathdoc.fr/item/STUMA_1995__115_1_216197/