Ambiguous loci of the farthest distance mapping from compact convex sets
Studia Mathematica, Tome 112 (1995) no. 2, p. 99.
Voir la notice de l'article dans European Digital Mathematics Library
Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by
K
0
the set of all X ∈ K() such that the farthest distance mapping
a
↦
M
X
(
a
)
is multivalued on a dense subset of . It is proved that
K
0
is a residual dense subset of K().
@article{STUMA_1995__112_2_216147, author = {F. De Blasi and J. Myjak}, title = {Ambiguous loci of the farthest distance mapping from compact convex sets}, journal = {Studia Mathematica}, pages = {99}, publisher = {mathdoc}, volume = {112}, number = {2}, year = {1995}, zbl = {0818.52002}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216147/} }
TY - JOUR AU - F. De Blasi AU - J. Myjak TI - Ambiguous loci of the farthest distance mapping from compact convex sets JO - Studia Mathematica PY - 1995 SP - 99 VL - 112 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216147/ LA - en ID - STUMA_1995__112_2_216147 ER -
F. De Blasi; J. Myjak. Ambiguous loci of the farthest distance mapping from compact convex sets. Studia Mathematica, Tome 112 (1995) no. 2, p. 99. https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216147/