Ambiguous loci of the farthest distance mapping from compact convex sets
Studia Mathematica, Tome 112 (1995) no. 2, p. 99.

Voir la notice de l'article dans European Digital Mathematics Library

Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by K 0 the set of all X ∈ K() such that the farthest distance mapping a ↦ M X ( a ) is multivalued on a dense subset of . It is proved that K 0 is a residual dense subset of K().
Classification : 52A07, 51K05
Mots-clés : convex sets, farthest points, distance mapping
@article{STUMA_1995__112_2_216147,
     author = {F. De Blasi and J. Myjak},
     title = {Ambiguous loci of the farthest distance mapping from compact convex sets},
     journal = {Studia Mathematica},
     pages = {99},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {1995},
     zbl = {0818.52002},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216147/}
}
TY  - JOUR
AU  - F. De Blasi
AU  - J. Myjak
TI  - Ambiguous loci of the farthest distance mapping from compact convex sets
JO  - Studia Mathematica
PY  - 1995
SP  - 99
VL  - 112
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216147/
LA  - en
ID  - STUMA_1995__112_2_216147
ER  - 
%0 Journal Article
%A F. De Blasi
%A J. Myjak
%T Ambiguous loci of the farthest distance mapping from compact convex sets
%J Studia Mathematica
%D 1995
%P 99
%V 112
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216147/
%G en
%F STUMA_1995__112_2_216147
F. De Blasi; J. Myjak. Ambiguous loci of the farthest distance mapping from compact convex sets. Studia Mathematica, Tome 112 (1995) no. 2, p. 99. https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216147/