On sequential convergence in weakly compact subsets of Banach spaces
Studia Mathematica, Tome 112 (1995) no. 2, p. 189.
Voir la notice de l'article dans European Digital Mathematics Library
We construct an example of a Banach space E such that every weakly compact subset of E is bisequential and E contains a weakly compact subset which cannot be embedded in a Hilbert space equipped with the weak topology. This answers a question of Nyikos.
Classification :
54C35, 46A50
Mots-clés : Banach space, weakly compact set, uniform Eberlein compact space, bisequential space, weakly compact
Mots-clés : Banach space, weakly compact set, uniform Eberlein compact space, bisequential space, weakly compact
@article{STUMA_1995__112_2_216145, author = {Witold Marciszewski}, title = {On sequential convergence in weakly compact subsets of {Banach} spaces}, journal = {Studia Mathematica}, pages = {189}, publisher = {mathdoc}, volume = {112}, number = {2}, year = {1995}, zbl = {0822.46004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216145/} }
Witold Marciszewski. On sequential convergence in weakly compact subsets of Banach spaces. Studia Mathematica, Tome 112 (1995) no. 2, p. 189. https://geodesic-test.mathdoc.fr/item/STUMA_1995__112_2_216145/